
RESEARCH ARTICLE

Control of Movement

The impact of dwell time on the contextual effect of visual and passive lead-in
movements

Laura Alvarez-Hidalgo,1 David W. Franklin,2,3,4 and Ian S. Howard1

1School of Computing, Engineering and Mathematics, University of Plymouth, Plymouth, United Kingdom; 2Neuromuscular
Diagnostics, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany; 3Munich Institute of
Robotics and Machine Intelligence (MIRMI), Technical University of Munich, Munich, Germany; and 4Munich Data Science
Institute (MDSI), Technical University of Munich, Munich, Germany

Abstract

Contextual cues arising from distinct movements are crucial in shaping control strategies for human movement. Here, we exam-
ine the impact of visual and passive lead-in movement cues on unimanual motor learning, focusing on the influence of “dwell
time,” where two-part movements are separated by the interval between the end of the first movement and the start of the sec-
ond. We used a robotic manipulandum to implement a point-to-point interference task with switching opposing viscous curl fields
in male and female human participants. Consistent with prior research, in both visual and passive lead-in conditions, participants
showed significant adaptation to opposing dynamics with short dwell times. As dwell time increased for both visual and passive
signals, past movement information had less contextual influence. However, the efficacy of visual movement cues declined more
rapidly as dwell times increased. At dwell times greater than 800 ms, the contextual influence of prior visual movement was
small, whereas the effectiveness of passive lead-in movement was found to be significantly greater. This indicates that the effec-
tiveness of sensory movement cues in motor learning is modality dependent. We hypothesize that such differences may arise
because proprioceptive signals directly relate to arm movements, whereas visual inputs exhibit longer latency and, in addition,
can relate to many aspects of movement in the environment and not just to our own arm movements. Therefore, the motor sys-
tem may not always find visual movement cues as relevant for predictive control of dynamics.

NEW & NOTEWORTHY This research uncovers, for the first time, how visual and proprioceptive sensory cues affect motor learn-
ing as a function of the pause or “dwell time” in two-part movements. The study has shown that visual lead-in movement cues
lose their effectiveness sooner than passive lead-in movement cues as dwell time increases. By revealing the modality-depend-
ent nature of sensory information, this study enhances our understanding of motor control and opens new possibilities for
improving therapeutic interventions.

dynamic learning; lead-in context; motor memory; predictive compensation; temporal decay

INTRODUCTION

To perform effective arm movements, the human motor
system must adapt to both the arm’s dynamics and its envi-
ronment. Numerous studies have investigated how themotor
system deals with changes in dynamics. Viscous curl fields, in
particular, have proven to be useful for examining the adapta-
tion of the human motor system to novel dynamics (1–3). In
untrained participants, a curl field initially disrupts straight
hand movements by exerting a force perpendicular to the

handmotion and proportional to its velocity. However, adap-
tation to curl-field dynamics occurs rapidly, usually over a few
dozenmovement trials. After this period, movement trajecto-
ries almost resemble those executed when no curl field is pres-
ent. This adaptation, however, is hindered when the direction
of the curl field changes unpredictably. When individuals
experience two opposing viscous curl fields during move-
ments, the learning from the second can disrupt the memory
of the first. This phenomenon is known as retrograde interfer-
ence (4, 5). Similarly, prior learning can affect subsequent
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learning, a phenomenon known as anterograde interference
(6–8). When curl fields with opposing directions are presented
randomly and in balanced proportions, during so-called inter-
ference tasks, it has been observed that learning does not
occur unless contextual cues are present (9–14).

This interference paradigm provides a valuable technique
for testing the impact of contextual information. With effec-
tive contextual cues, learning to adapt to opposing curl fields
becomes possible. Prior lead-in movements have been shown
to significantly influence the learning of novel dynamics (15–
19). Their influence has also been demonstrated in bimanual
tasks, extending the understanding of lead-in movements
across both arms (20, 21). Notably, in the unimanual case, vis-
ual, passive, and active lead-inmovements all exert a substan-
tial contextual effect on the adaptation to novel dynamics in
subsequentmovements (15).

The generalization characteristics of unimanual lead-in
movements have been extensively studied across various
modalities. These studies include examining the effects of
movement direction in visual (18, 22), passive (16), and active
lead-ins (17). In terms of prior movement direction, active and
passive lead-ins show similar angular generalization charac-
teristics, whereas those of visual lead-ins are broader and
weaker. Furthermore, the examination of generalization for
additional kinematic movement characteristics, such as dis-
tance, speed, or duration, reveals notable differences between
visual and passive lead-in movements (19). Another related
study found that increased variability in active lead-ins slowed
motor adaptation, whereas variations in visual lead-ins had no
significant effect (23). It was suggested that this phenomenon
could be explained by the differences between their respective
generalization characteristics. Taken together, these variations
indicate that the way the motor system receives information
from past movements significantly affects the formation of
motormemory.

It has been shown that the contextual effect of active lead-
in movements diminishes as dwell time increases, disap-
pearing almost completely over 1,000ms (15). Given that dif-
ferent lead-in modalities exhibit varying generalization
characteristics, this suggests that the influence of dwell time
on adaptationmight also vary. Although the impact of dwell
time in active lead-ins has been studied in some detail, the
behaviors of passive and visual lead-ins under similar condi-
tions have not yet been fully examined. In this study, we
investigate the impact of dwell time on the contextual effects
of visual and passive lead-ins in the learning of opposing
dynamics, examining how these effects diminish as dwell
time increases. Our study adheres to the same experimental
protocol as the previous active lead-in movement study of
the effect of dwell time (15), including the use of a vBOT
robotic manipulandum (24), to facilitate a direct comparison
with the results of this prior study.

MATERIALS AND METHODS

Participants

We recruited 48 human participants from the same demo-
graphic, each randomly assigned to one of two distinct
experiments, with three different dwell time conditions. The
first group, consisting of 24 participants (14 females and 10

males, average age: 20.83 ± 1.99 yr), participated in the vis-
ual lead-in experiment 1. The second group, consisting of
24 participants (10 females and 14 males, average age:
21.92 ± 3.23 yr), took part in passive lead-in experiment 2.
To avoid bias, participants were naïve to the purpose of
the experiment. Each condition included eight partici-
pants, based on sample sizes used in a previous study (15).

According to the Edinburgh Handedness Questionnaire
(25), all participants were right-handed. Before their involve-
ment, participants were not informed of the study’s specific
objectives, and each participant provided informed written
consent. All experiments were conducted in full accordance
with a protocol approved by the Science and Engineering
Faculty Research Ethics and Integrity Committee at the
University of Plymouth, and we strictly adhered to the
approved guidelines.

Apparatus

All experiments were conducted using a vBOT planar
robotic manipulandum (24), paired with a two-dimensional
(2-D) virtual reality system, as illustrated in Fig. 1. The han-
dle’s location was determined using optical encoders,
sampled at 1,000 Hz. Appropriate state-dependent end-point
forces were applied to the handle by controlling the torque
of the robot’s drive motors.

A force transducer (Nano 25; ATI), mounted beneath the
handle of the robotic manipulandum, measured the applied
forces. The output signals were low-pass filtered at 500 Hz
using fourth-order analog Bessel filters before digitization.
To minimize body movement, participants were seated in a
sturdy chair positioned in front of the apparatus and
securely fastened to the backrest with a four-point seatbelt.

During the experiment, participants held the robot handle
with their right hand, while their forearm was supported by
an air sled, which restricted armmovements to the horizon-
tal plane. Participants could not see their arm or hand
directly; instead, they were provided with accurate visual
feedback using the virtual reality system. Images of the start-
ing point, via-point, and target locations (each with a 1.25 cm
radius), and a hand cursor (a 0.5 cm radius red disk), were
overlaid to align with the actual plane and location of the
participant’s hand. Data were collected at a sampling rate of
1,000 Hz and stored on a solid-state drive (SSD) for offline
analysis usingMATLAB (TheMathWorks Inc., Natick, MA).

Force Fields

All trials began with a lead-in movement to provide con-
text, followed by an active adaptation movement to a final
target. In the adaptation phase, participants made reaching
movements in three different types of trials: null field trials,
viscous curl force field trials (9, 26), or simulated channel tri-
als (27–29). The velocity-dependent viscous curl field was
implemented according to Eq. 1:�

Fx

Fy

�
¼ b

�
0 �1
1 0

��
_x
_y

�
: ð1Þ

In this equation, the field constant b had a value of ±13
N·s/m, where its sign determined the curl-field direction
[clockwise (CW) or counterclockwise (CCW)]. Each partici-
pant was subjected to both directions of the curl-field,
which were consistently linked with a specific lead-in
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movement direction. To minimize potential directional
bias, the association between the contextual movement
direction and the curl-field direction was counterbalanced
across participants.

Mechanical channel trials, from the central location to the
final target, were used to assess the level of predictive com-
pensation for the curl fields (27). These channels were imple-
mented using a spring constant of 6,000 N/m and a viscous
damping constant of 30 N·s/m, with their effects applied
perpendicularly to the direction of motion throughout the
movement. A channel trial was implemented according to
Eq. 2:�
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Two separate experiments were conducted with different
groups of participants, each using a similar protocol. In each
experiment, participants waited for either a visual cue or a
passive cue, depending on the experimental setup.

In the visual lead-in experiment 1, the participant’s hand
was initially located at the central via-point. Participants
observed a cursor moving from a starting position to a via-
point while their right hand remained stationary. In con-
trast, in the passive lead-in experiment 2, the participant’s
hand was initially positioned at a peripheral starting point
and was pulled to the central via-point by the robotic system,
thus avoiding activemovement generation.

Following the cue, participants were instructed to con-
tinue performing an active movement only after a prede-
fined dwell time had elapsed. This target dwell time was
nominally set at either 150 ms, 300 ms, or 500 ms, depend-
ing on the experimental condition. These constituted the
minimum dwell times that could be accepted in each respec-
tive condition. In both experiments, the active movement
consisted of a 12 cmmotion to the target.

Minimum Jerk Trajectory Generation

The contextual lead-in motions followed a trajectory gen-
erated by the vBOT system, rather than by the participant,
from the given starting location to the central via-point loca-
tion. For a one-dimensional movement starting at location
x0, with duration T and distance D, the minimum jerk posi-
tion trajectory x(t) at time t, is given by Eq. 3:

xðtÞ ¼ xo þ D 10
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See also Ref. 30. The corresponding velocity trajectory v(t)
at time t is given by the time derivative of position:

vðtÞ ¼ D
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In our experiments, trajectory parameters were specified
as T ¼ 663 ms and D ¼ 10 cm, as used in the previous active
lead-in study (15), which led to smooth and achievable pas-
sive lead-in movements. The termination condition for the
lead-in movement also followed those used in the previous
study, based on both position and speed, as described in the
following relevant sections.

Visual Lead-In Experiment 1

Protocol.
A schematic depiction of the experimental protocol expe-
rienced by a participant is illustrated in Fig. 2. This out-
lines the training and testing procedures, highlighting
the directions used for both contextual and adaptation
movements. In total, there were four different starting
points for the contextual movement. These were located
on the circumference of a circle with a 10 cm radius, with
its center corresponding to the central workspace coor-
dinate position (0, 0). Specifically, the start locations
were positioned at angles of 45�, 135�, 225�, and 315�. The
end point for the contextual movement was always at
the via-point, also located at the central workspace coor-
dinate position.

For the adaptation movement, there were four target
points, located on the circumference of a circle with a
12 cm radius, with its center again corresponding to the
central workspace coordinate position. This time, the tar-
get locations were positioned at angles of 0�, 90�, 180�, and
270�. Each adaptation movement direction was associated
with two distinct contextual movement directions. These
relationships determined the direction of the viscous curl-
field experienced by participants during the adaptation
phase of a trial. This resulted in eight unique combina-
tions of contextual and adaptation movements, as out-
lined in Table 1.

Figure 1. Schematic illustration of the
experimental setup. A: plan view of the
vBOT robotic manipulandum, air table,
and air sled. B: side view of the vBOT
robotic manipulandum, showing its virtual
reality environment.
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Channel trials were conducted exclusively for movements
toward the 0� target. The corresponding lead-in contextual
movements originated from locations at either 135� or 225�.

Each trial began with the participant holding the robotic
handle and pressing the activation switch. They were then
pulled by the robotic arm to the handle’s starting location for
the trial, which in this case was the via-position. At this
stage, a gray disk was shown at the starting point of the con-
textual movement. Once the handle remained stationary
within its via-point location for 300 ms, the trial proceeded.
Then, gray and yellow disks, representing the via-point and
target point, respectively, appeared simultaneously with a
red moving cursor, which provided the contextual visual
movement.

The red cursor moved in a minimum-jerk trajectory
directly along the lead-in path toward the via-point. The
lead-in terminated when the cursor reached within a prede-
fined tolerance of the via-point goal location. In the visual
experiment, since the lead-in cursor movement was unaf-
fected by the participant’s behavior, a tight tolerance was
used, corresponding to the cursor moving within 0.5 cm of
the central via location. This resulted in a theoretical lead-in
duration of 513 ms. The vBOT recorded a flag to indicate
when the visual lead-in movement had started and termi-
nated to facilitate later offline MATLAB analysis of the data.

When the contextual movement was complete, its starting
location changed from gray to white, accompanied by an
auditory beep. After they perceived that the predefined dwell
time had been met, participants initiated an active move-
ment to the target. If they attempted tomove prematurely or
failed to commence themovement within the required dura-
tion, the vBOT aborted the trial. This ensured that after the
contextual movement, participants remained at the via-
point for the necessary dwell time beforemaking the adapta-
tion movement. The trial terminated when the participant
actively moved the cursor into the yellow target and stayed
there for 300ms.

Experimental Block Design

An experiment consisted of blocks of 18 trials, each com-
prising 16 field trials and two clamp trials. During the field
trials, all the four targets were presented twice, in both
opposing field directions. Each experiment began with 12
blocks of null field trials at the specified experimental dwell
time relationship, allowing participants to acclimatize to
making movements using the robotic manipulandum. This
was followed by a training session consisting of 75 blocks of
velocity-dependent curl fields, in which the field direction
was determined by the direction of the contextual move-
ment. The experiment concluded with 4 blocks of washout

Figure 2. Visual lead-in movements exper-
imental design. A: null and training trials.
Here, we show one of the four movement
target locations (0�) with both of its visual
contextual lead-in conditions, indicating
the start, via, and target locations, and the
hand position and red cursor starting loca-
tions. Each trial session began with the
participant’s hand at the via-point. A visual
lead-in movement then followed from the
peripheral start position to the via-point,
and after the appropriate dwell time, the
participant moved to the displayed target
position. B: channel trials. These trials only
used a single adaptation movement direc-
tion to a target point at 0�, which was asso-
ciated with two visual lead-in directions,
one for each curl-field direction, with start-
ing points at 135� and 225�. C: outline of
the trials in the visual lead-in experimental
protocol.

Table 1. Specification of contextual and adaptation
movements and curl-field directions

Adaptation

Target

Contextual

Start

Field Direction

Normal

Field Direction

Reverse

0� 135� CCW CW
0� 225� CW CCW
90� 315� CCW CW
90� 225� CW CCW
180� 45� CCW CW
180� 315� CW CCW
270� 135� CCW CW
270� 45� CW CCW

The table provides the specific combinations of adaptation tar-
get angles and contextual starting point angles used in the experi-
ments. It also shows their corresponding relationship between
these angles and the direction of the curl field. In a given experi-
ment and dwell time condition, the label “Normal” indicates the
curl-field direction for four participants, and “Reverse” represents
the direction for the remaining four participants. This counterbal-
ancing approach was used to minimize potential biases that might
arise from the interaction between the direction of movement and
the curl field. CCW, counterclockwise; CW, clockwise.
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trials, to examine the aftereffects of the curl fields being
removed. Channel trials, set at the training timing relation-
ship, were interspersed throughout the experiment.

In total, there were 1,638 trials. The study lasted around 3 h,
although some participants took longer in experimental con-
ditions with longer dwell times. Participants were required to
take short rest breaks every 195 to 205 trials. The exact num-
ber was determined randomly so it would not lead to a trend
in the data across participants at break boundaries. They
could also rest at any time. The timeline of the trials in the
experiment is shown in Fig. 2C.

To examine the effect of different dwell times on curl-field
adaptation, groups of eight different participants performed
the experiment in three different goal dwell time conditions:
short (150 ms), medium (300 ms), or long (500 ms). These
were selected based on an interpretation of the results from
the previous active dwell time study (15), given the hypothe-
sis that the decline in compensation for passive and visual
lead-ins would likely follow a similar trend. These earlier
results suggested that there would be a substantial reduction
in the compensation effect with a requested dwell time of
500 ms. We also decided it would be useful to include addi-
tional data points for shorter dwell times, so we selected 150
ms and 300 ms. We did not include a very short dwell time
condition, since we expected this would simply yield a high
level of compensation across both the visual and passive
experiments, and that it would be more informative to sam-
ple dwell times at points where greater reductions in com-
pensation were anticipated. Finally, we note that dwell times
longer than 500 ms substantially increase the duration of
the experiments, making themmore challenging to run.

The actual dwell times performed by participants were
calculated from the recorded movement data trajectories,
and these values were used in subsequent data analysis.

Passive Lead-In Experiment 2

Protocol.
The passive lead-in experiment 2 was like the visual lead-in
experiment 1 with the exception that the lead-in movement
modality is passive movement rather than visual, requiring a
corresponding change in the hand’s starting position for
each trial. A schematic depiction of the passive lead-in
experimental protocol is illustrated in Fig. 3 for a single tar-
get direction.

To initiate a trial in the passive experiment, the vBOT
moved the participant’s hand to the starting location of the
lead-inmovement. At this stage, a gray disk was shown only at
the starting point of the contextual movement. Once the han-
dle remained stationary within this starting location for 300
ms, the trial proceeded. Then, gray and yellow disks appeared
to identify the via-point and target point, respectively.

The robot’s handle then physically moved the partici-
pant’s hand toward the via-point, following a minimum jerk
trajectory, via a stiff spring (k¼ 2,000 N·m), thereby generat-
ing a passive lead-in movement. No visual cursor movement
was shown during this operation to avoid the generation of
visual cues.

The passive lead-in was successfully completed when the
handle reached a position within a predefined tolerance of
the via-point goal location. Here, as the lead-in movement
could be affected by the participant’s behavior, a more
relaxed termination tolerance was needed, corresponding to
moving within a distance of 1.5 cm from the central via loca-
tion while maintaining a speed below 5 cm/s. Provided that
the participant did not hinder handle movements, this
resulted in an unperturbed theoretical lead-in duration of
559 ms; however, the actual value varied slightly if they
resisted or assistedmovement.

Figure 3. Passive lead-in movements
experimental design. A: null and training tri-
als. Here, we show one of the four move-
ment target locations (0�) with both of its
passive contextual lead-in conditions, indi-
cating the start, via, and target locations,
and the hand position and red cursor start-
ing locations. Each trial session began with
the participant’s hand at the start point. A
passive lead-in movement then followed
from the peripheral start position to the via-
point, and after the appropriate dwell time,
the participant moved to the displayed tar-
get position. B: channel trials. These trials
only used a single adaptation movement
direction to a target point at 0�, which was
associated with two passive lead-in direc-
tions, one for each curl-field direction, with
starting points at 135� and 225�. C: outline
of the trials in the passive lead-in experi-
mental protocol.
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Once the contextual movement was complete, the via-
point turned white, and a red cursor appeared, indicating
the participant’s hand position. Upon perceiving that the
required dwell time had elapsed, participants initiated their
movement toward the target point. If they began the move-
ment prematurely or failed to initiate the active movement
within the stipulated duration, the vBOT intervened, forcing
the participant to restart the trial. The trial terminated when
the actively moved cursor reached the yellow target disk and
stayed there for 300ms.

DATA ANALYSIS
The experimental data were processed offline using

MATLAB R2024a. Learning was evaluated using twometrics:
kinematic error during adaptationmovements and force com-
pensation during channel trials. In addition, the actual dwell
times were calculated for all participants in each experiment.

Hand Trajectory Plots

Hand trajectory plots provide a useful indication of partic-
ipants’movement behavior, showing the effect of the intro-
duction and subsequent removal of the curl fields. In both
lead-in experiments, there were four critical stages: The last
block of null-field exposure, the initial block of curl-field
exposure, the final block of curl-field exposure, and the ini-
tial washout block after curl-field removal.

At critical stages in the experiment, we selected hand tra-
jectories only for the adaptation phase of each movement,
excluding the channel trials. We then analyzed each of these
four selected blocks of trials separately. In each chosen
block, there were eight different combinations of target
direction and curl-field direction per participant. We calcu-
lated themean and standard error (SE) across participants.

Kinematic Error

For each null and viscous curl-field trial, the kinematic
error during the adaptation phase of the movement was
quantified using its maximum perpendicular error (MPE).
The MPE was calculated as the maximum deviation of the
hand’s path from the straight line connecting the actual start
position of the movement to the center of the target.

For each participant, an average MPE was first computed
for all movements for each curl-field direction separately,
across two blocks (16 trials for each direction). Then, the
mean and standard error (SE) of these signedMPEs were cal-
culated across all participants and plotted to indicate behav-
ior in each field direction.

Next, we appropriately combined the individual partici-
pants’ results from clockwise (CW) and counterclockwise
(CCW) field trials to obtain the overall mean and standard
error (SE) of the MPE values across all participants and for
both field directions, giving values corresponding to 32 field
trials. In the latter calculation, the sign of the MPE was
flipped appropriately so that both force field directions
would produce positive errors.

Estimation of Adaptation to the Curl Field

When making point-to-point movements in a null field
condition (i.e., during free unloaded hand movements),

movements are typically characterized by straight trajecto-
ries. On initial exposure to a curl field, participants are ini-
tially pushed off these straight paths by a velocity-dependent
perpendicular force, which results in looped paths. However,
participants rapidly adapt and generate predictive compensa-
tory forces to counteract the effect of the curl field (9).
Predictive feedforward adaptation is a process by which the
motor system learns to compensate for changes in the motor
task, such as arm dynamics, bymaking compensatory adjust-
ments independently of feedback (31, 32).

Channel trials, in which movements are constrained to
straight paths, provide ameans to directly estimate this com-
pensation and thereby provide a means to estimate the
extent participants compensate for the effect of the curl field
(33). During channel trials, the perpendicular force exerted
on the wall of the simulated channel was measured using a
force transducer. This enabled the estimation of predictive
feedforward adaptation to the applied curl field, which was
achieved by regressing measured force against the move-
ment velocity along the channel without an offset term (34).
The use of a channel is often considered a more reliable
method to assess learning than simply observing the reduc-
tion of kinematic error during force field adaptation, which
can be influenced bymuscle co-contraction (33, 35, 36).

To indicate the progressive increase in compensation over
the course of the experiment for each of the curl field direc-
tions separately, an average curl-field compensation value
was first computed for each participant across all movements
in each curl-field direction, using data from two blocks (each
containing two channel trials per direction). Then, the mean
and standard error (SE) of these signed compensation values
were calculated across all participants and plotted to indicate
behavior in each field direction.

Furthermore, to indicate the overall increase in compensa-
tion over the course of the experiment, the curl-field compen-
sation values were averaged over the four consecutive
channel trials across two blocks, which corresponded to both
field directions. This was achieved by appropriately adjusting
the sign of the values before calculating the mean. To exam-
ine the overall adaptation to the two viscous curl fields during
training, we then computed themean and standard error (SE)
of compensation for the training trials across all participants.

To estimate the final levels of compensation achieved
across the different experimental and dwell time conditions,
final compensation values were calculated by averaging
sign-adjusted compensation values for both field directions
over the last 20 consecutive channel trials (the last 10 expo-
sure blocks) in the exposure phase of the experiment.
Finally, the mean and standard error (SE) of compensation
for the training trials across all participants were calculated.

Estimation of Dwell Time in Experiments 1 and 2

To estimate the actual dwell times of movements per-
formed by participants, we calculated the time difference
between the end of the lead-in movement and the start of
the adaptation movement. The termination of the lead-in
movement was identified using a recorded lead-in flag signal
supplied by the vBOT data. After the contextual lead-in had
terminated, the hand was positioned at the via-point in both
the visual and passive lead-in experimental conditions.
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The start of the adaptation movement was estimated to
occur when the hand position moved away from the central
via-point by more than its radius (1.25 cm), placing it just
outside the via-circle, and was traveling at a speed greater
than 5 cm/s. To enhance the robustness of the detection pro-
cess, the start of the adaptationmovement also had to satisfy
a minimum dwell time criterion set by the specific dwell
time condition. The dwell time formula is shown in Eq. 5 as
follows:

dwell time ¼ adaptationmovement start time
� contextualmovement end time ð5Þ

The lead-in duration for each trial was also directly deter-
mined from the recorded lead-in flag signal.

Reanalysis of Previous Active Lead-In Data

To compare the results of the current study with relevant
results from a previous study (15), which examined the effect
of dwell time on active lead-in, we reanalyzed the former
data set using our current MATLAB code. In addition to
examining the former active lead-in datasets, we also reana-
lyzed short-latency passive and visual experimental data
from the former study.

The only difference between the analysis of the active
lead-in data and the current visual and passive datasets was
how the start and end of the lead-in movement were deter-
mined. As there was no flag signal indicating the operation
of the active lead-in, both the start and termination of the
lead-in movement were determined based on the hand posi-
tion and speed. The start of the lead-in was determined
when the hand exceeded a threshold distance (1.25 cm) from
the start location and its speed was greater than 5 cm/s.
Correspondingly, lead-in was deemed to have terminated
when the hand was within a threshold distance (1.25 cm)
from the via-location and its speed was less than 5 cm/s.

We note that the reanalysis of the short-latency passive
and visual experimental data from the former study made
use of a lead-in flag signal and was identical to the analysis
of the current passive and visual lead-in data.

Statistical Analysis

Statistical analyses were conducted using JASP (37). To
ensure the validity of our analyses, Mauchly’s test was used
to assess the assumption of sphericity when applicable. In
cases where this assumption was violated, the degrees of
freedom were adjusted using the Greenhouse–Geisser cor-
rection. The significance level (a) was set at 0.05 for all tests,
and omega squared (x2) was reported as the effect size.
Omega squared (x2) serves as a measure of how much var-
iance in the dependent variable is explained by the explana-
tory variables.

Each of the two experiments was conducted with different
participants under three dwell time conditions, resulting in
a total of six sets of MPE data and six sets of force compensa-
tion data. For each of these six datasets, we first performed
repeated-measures ANOVAs to examine differences in MPE
and force compensation at various critical phases within
each experimental condition.

To evaluate kinematic error, we compared the final pre-
exposure MPE (themean of the last two pre-exposure blocks),
the initial exposure MPE (the mean of the first two exposure

blocks), the final exposure MPE (the mean of the last two
exposure blocks), and the initial washout MPE (the mean of
the first two washout blocks). This comparison was conducted
using a repeated-measures ANOVA, with phase serving as a
repeated factor (4 levels). When a significant main effect was
observed, we proceeded with post hoc comparisons using the
Holm–Bonferroni correction.

For force compensation, we compared the final pre-expo-
sure (the mean of the last pre-exposure blocks), the final
exposure (themean of the last two exposure blocks), and the
initial washout using a repeated-measures ANOVA, with
phase (3 levels: pre-exposure, final exposure, and washout)
as the repeated factor.

To compareMPE across dwell time conditions within each
experiment, we performed ANOVAs on both the initial MPE
(the mean of the first two exposure blocks) and the final
exposure MPE (the mean of the last two exposure blocks),
treating dwell time as a three-level factor.

In parallel, we conducted ANOVAs on the mean of the
final two exposure blocks for force compensation, with dwell
time considered as a three-level factor. Post hoc comparisons
were conducted using the Holm–Bonferroni correction
whenever a significantmain effect was identified.

To compare results across experiments, we performed
ANOVAs on the force compensation data, specifically
using the mean of the final 10 exposure blocks. In this
analysis, both experimental conditions (2 levels) and dwell
time (3 levels) were considered as factors. Again, post hoc
comparisons were conducted with the Holm–Bonferroni
correction if a significant main effect was detected.

RESULTS
Participants performed one of two experiments, one with

a visual contextual lead-in and the other with a passive con-
textual lead-in, to examine the effects of lead-in modality on
adaptation to two opposing force fields. In both experiments,
participants first experienced a contextual movement (visual
or passive) to a central via-point. After a specified dwell
time, they were required to perform an activemovement to a
given target location.

In each experiment, there were three conditions with dif-
ferent dwell time requirements, which were performed by
different groups of participants. These permitted the exami-
nation of how adaptation to two opposing curl fields is
affected as the time delay between the contextual movement
and the adaptationmovement was changed.

Each experiment consisted of a baseline, in which the
active movement took place in the null-field condition to
acclimatize participants to the experiments and to quantify
their baseline movement performance, followed by the
introduction of curl force fields introduced to examine adap-
tation to these novel dynamics (exposure phase). Finally,
there was a washout phase.

Visual Lead-In Experiment 1

Dwell time analysis.
The dwell times correspond to the measured times between
the end of the contextual movements and the initiation of the
corresponding adaptationmovements. To quantify the dwell
times that occurred during the training exposure for all
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participants, we generated a histogram of all curl field trials.
This analysis was performed separately for the short, medium,
and long experimental conditions. For each histogram, the
mean and standard deviation of the dwell time values were
calculated to further quantify them.

To quantify the dwell times in trials used to estimate the
final levels of compensation achieved by the participants, we
also generated a histogram for the final 10 blocks (20-channel
trials) in the exposure phase. This analysis was again per-
formed separately for the short, medium, and long experi-
mental conditions.

Figure 4A shows the histogram plots for the three different
dwell time conditions for all exposure trials, and Fig. 4B
shows them for the last 10 blocks of channel trials in the
exposure phase. We note that there is good agreement in the
form of the histograms in the exposure phase and the probe
channels used to estimate final levels of compensation,
although there are clearly considerably fewer data points in
the channel conditions.

In addition, in all cases, the mean and mode values differ
from each other, and the mode of the distributions is shifted
from the mean to the left, toward lower values. The dwell
time distributions also become more spread out for the
larger dwell time conditions.

Hand Trajectories

The hand trajectories for all three conditions in the visual
lead-in experiment 1 were examined in four different stages
of the experiments (Fig. 5). The first column (Last Null)
shows hand trajectories during the last block of trials in the
null phase and shows that participants were able to perform

unhindered straight movements in all three conditions. The
second column (Initial Curl) shows the first block of trials
after the introduction of the curl field, revealing that partici-
pants deviated strongly from a straight movement in all
three conditions. The third column (Final Curl) shows hand
trajectories during the last block of curl-field trials. This
highlights distinct differences across dwell time conditions.
Notably, in the short dwell time condition, participants per-
formed almost straight movements, close to baseline per-
formance. In the medium dwell time condition, participants
still exhibited effects of the curl fields and still deviated
somewhat from the straight path. In the long dwell time
condition, the effect of the curl fields was still apparent,
suggesting there was little adaptation. The final column
(Washout) shows the first block of trials during the wash-
out phase, after the curl field was removed. It is evident
that short dwell times led to strong aftereffects, leading to
significant deviation from straight trajectories in the oppo-
site direction to that seen during curl-field exposure. As
the dwell time increased, the deviation was reduced, and
in the long dwell time condition, the trajectories were
effectively straight.

Kinematic Error and Force Compensation

To examine the overall level of adaptation in the different
dwell conditions, we initially combined the effect of both
curl-field directions by calculating a single value from the
dual maximum perpendicular error (MPE) and compensa-
tion values (Fig. 6).

To examine kinematic error during the experiments, we
plotted the maximum perpendicular error (MPE) across the

Figure 4. Visual lead-in dwell time histogram plots. The plots show the distribution of measured dwell times executed by participants across the three
experimental dwell time conditions. The black line indicates the mean dwell time for each condition, and the black dotted line indicates the correspond-
ing median dwell time. A: the dwell time histogram for curl field exposure trials shows mean (median) values of 276.9 ms (266.0 ms) for short, 452.1 ms
(434.6 ms) for medium, and 802.2 ms (753.5 ms) for long dwell times. B: the dwell time histogram for the channel trials during the last 10 blocks (20 chan-
nel trials) of the exposure phase shows mean (median) values of 270.7 ms (264.3 ms) for short, 442.9 ms (439.0 ms) for medium, and 802.6 ms
(753.0 ms) for long dwell times.
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experimental blocks for the short, medium, and long dwell
time conditions (Fig. 6A). During the null-field exposure,
MPE was essentially zero across all conditions. Upon the
introduction of the curl field, MPE dramatically increases in
all three conditions. However, by the end of curl-field expo-
sure, MPE decreases by a larger amount in the case of short
dwell times compared with long dwell times. In this case,
MPE for themedium dwell time was only slightly lower than
for the longer dwell times. During the final washout phase,
the MPE exhibited a negative sign, indicating deviation in
the opposite direction of that created by the curl field. Short
dwell times led to a larger magnitude of aftereffect than
medium or long dwell times.

Repeated measures ANOVAs indicated that the MPE
showed significant variations between the pre-exposure, ini-
tial exposure, final exposure, and washout phases for all
dwell time conditions. Post hoc comparisons further tested
the significant differences between these phases. In the short

dwell time condition (F3,21¼ 121.748; P < 0.001; x2 ¼ 0.903),
MPE was low during the initial null-field exposure, then it
significantly increased upon introduction of the curl-field
(Pbonf < 0.001). Over the exposure phase, MPE significantly
decreased (Pbonf < 0.001). MPE during the washout phase
showed a significant difference compared with the pre-expo-
sure phase (Pbonf< 0.001). For themedium dwell time condi-
tion (F3,21¼ 176.789; P < 0.001; x2 ¼ 0.929), MPE was low
during the initial null-field exposure, andMPE increased sig-
nificantly upon the introduction of the curl-field (Pbonf <
0.001). Over the exposure phase, MPE decreased signifi-
cantly (Pbonf < 0.001). MPE during the washout phase
showed a significant difference compared with the pre-expo-
sure phase (Pbonf ¼ 0.007). In the long dwell time condition
(F3,21¼ 220.335; P< 0.001; x2 ¼ 0.926), MPE increased signif-
icantly upon the introduction of the curl-field (Pbonf <
0.001). Over the exposure phase, MPE decreased signifi-
cantly (Pbonf < 0.001). However, MPE during the washout

Figure 5.Hand trajectories in the visual lead-in experiment 1. The solid thick lines indicate the mean across participants and the shaded region indicates
the standard error of the mean. Red colors indicate trajectories in the context associated with clockwise (CW) curl force fields, whereas blue colors indi-
cate the trajectories in the context associated with counterclockwise (CCW) curl force fields. A: the short dwell time condition. B: the medium dwell time
condition. C: the long dwell time condition. The columns represent the Last Null, Initial Curl, Final Curl, and Washout stages of the experiment.

Figure 6. Adaptation in the visual lead-in
experiment 1. A: kinematic error. Overall
means (solid line) ± SE (shaded region) of
the maximum perpendicular error (MPE)
plotted against block pairs for the short,
medium, and long dwell-time conditions.
B: force compensation. Overall mean ± SE
percentage of compensation for the short,
medium, and long dwell-time conditions.
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phase showed no significant difference compared with the
pre-exposure phase (Pbonf¼ 0.669).

To quantify the amount of predictive force compensation to
the force fields, we examined the force compensation on the
channel trials for the short, medium, and long conditions
(Fig. 6B). During the initial null-field exposure, compensation
was low in all dwell time conditions. Upon the introduction of
the curl field, compensation gradually increased through-
out the exposure period. By the end of the curl-field expo-
sure, the compensation for the short dwell time condition
increased the most, whereas for longer dwell times, the
least compensation was observed. An intermediate com-
pensation level was seen for the medium dwell time.
During the washout phase, compensation values decayed
in all three dwell time conditions. Repeated-measures
ANOVAs indicated a significant increase in force compen-
sation between the final pre-exposure and final exposure
levels for short dwell times (F1,7¼ 59.253; P < 0.001; x2 ¼
0.785), medium dwell times (F1,7¼ 28.357; P ¼ 0.001; x2 ¼
0.617), and long dwell times (F1,7¼8.366; P¼ 0.023;x2¼ 0.280).

The MPE and compensation results indicate that partici-
pants were better able to compensate opposing dynamics by
making use of the visual lead-in context at shorter dwell
times. The contextual effect decreased as the dwell time
increased. Observations from the trajectory plots (Fig. 5) are
consistent with these findings.

Independent Adaptation to Opposing Force Fields

Although the previous analysis clearly shows adaptation to
the dynamics, it is unclear the level to which this is independ-
ently adapted to each force field direction. Figure 7 shows the
maximum perpendicular error (MPE) and compensation for

the visual lead-in experiment 1, with both plotted separately
for the two contextual directions, to permit the individual
examination of the learning process in each curl-field direc-
tion. Similar trends are observed in both curl-field directions.

We compared the final exposure MPE in both curl-field
directions of block pairs across participants (Fig. 7A). A
repeated-measures ANOVA indicated that there were no sig-
nificant differences between the two directions for the short
dwell time condition (F1,7¼ 1.199; P ¼ 0.310; x2 ¼ 0.004), for
the medium dwell time condition (F1,7¼0.246; P ¼ 0. 645;
x2 ¼ 0.000), or for the long dwell time condition (F1,7¼ 3.501;
P¼ 0.104; x2 ¼ 0.034).

Similarly, Fig. 7B shows the means ± SE compensation for
short, medium, and long dwell times. We compared the final
exposure compensation in both curl-field directions of block
pairs across participants. A repeated-measures ANOVA indi-
cated that they were not significantly different, for the short
dwell time condition (F1,7¼0.023; P¼ 0.883; x2 ¼ 0.000), for
the medium dwell time condition (F1,7¼0.131; P ¼ 0.728;
x2 ¼ 0.000), or for the long dwell time condition (F1,7¼ 3.501;
P¼ 0.433; x2 ¼ 0.000).

Passive Lead-In Experiment 2

Dwell time analysis.
Following a similar analysis for the visual lead-in data,
Fig. 8A shows the histogram plots for the three different
dwell time conditions for all exposure trials, and Fig. 8B
shows them for the final 10 blocks (20 channel trials) in the
exposure phase. We note that there is reasonable agreement
in the form of the histograms in the exposure phase and the
probe channels used to estimate final levels of compensation
at lower dwell times, but there appears to be a shift in the

Figure 7. Independent adaptation to opposing force fields. Visual lead-in means ± SE. Maximum perpendicular error (MPE) and compensation are plot-
ted for both opposing curl-fields. A: means ± SE MPE for short, medium, and long dwell times. B: means ± SE compensation for short, medium, and long
dwell times.
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distribution for channel trials toward lower dwell times in
the long condition.

The distributions spread out slightly as dwell time
increases. In the short condition, themean andmode values
deviate and are shifted to the left of the mean. However, in
the long condition, the mode and mean times are much
closer, and the distributions become more symmetrical
around themean.

Hand Trajectories

Hand trajectories were computed across the four stages
for each of the three dwell time conditions (Fig. 9). As shown
in the first column (Last Null), participants were able to per-
form unhindered straight movements in all three dwell time
conditions. The second column (Initial Curl) shows that on
initial curl-field exposure, participants deviated strongly

Figure 8. Passive lead-in dwell time histogram plots. The histograms show the distribution of measured movement dwell times in the lead-in movements
executed by participants across the three experimental dwell time conditions. The black line indicates the mean dwell time for each condition, and the
black dotted line indicates the corresponding median dwell time. A: the dwell time histogram for curl field exposure trials shows mean (median) values
of 308.5 ms (291.3 ms) for short, 519.0 ms (505.4 ms) for medium, and 807.5 ms (801.6 ms) for long dwell times. B: the dwell time histogram for the chan-
nel trials during the last 10 blocks (20 channel trials) of the exposure phase shows mean (median) values of 291.9 ms (280.0 ms) for short, 503.0 ms
(489.1 ms) for medium, and 774.1 ms (754.0 ms) for long dwell times.

Figure 9.Hand trajectories for the passive
lead-in experiment 2. Plot of the means ±
SE hand trajectories for the three experi-
ment conditions. A: the short dwell time
condition. B: the medium dwell time condi-
tion. C: the long dwell time condition. The
columns represent the Last Null, Initial
Curl, Final Curl, and Washout stages of
the experiment.
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from a straight movement in all three conditions. The third
column (Final Curl) shows that by the end of the training
phase, participants’ hand movements were almost straight
in the short dwell time condition but deviated more from a
straight line as the dwell time increased. However, even in
the long dwell time condition, they were still straighter than
those seen in the initial exposure phase. The final column
(Washout) shows strong aftereffects for the short dwell time
condition. As the dwell time increases, aftereffects become
less prominent, although there is still some deviation from
a straight-line trajectory even in the long dwell time
condition.

Kinematic Error and Force Compensation

To combine the effect of both curl-field directions, we cal-
culated a single value from the dual maximum perpendicu-
lar error (MPE) and compensation values (Fig. 10). During
the null-field exposure, MPE was essentially zero across all
conditions (Fig. 10A). Upon the introduction of the curl-field,
MPE dramatically increased in all three conditions. By the
end of curl-field exposure, MPE decreasedmore with shorter
dwell times than with longer dwell times. During the wash-
out phase, the MPE exhibited a negative value.

Repeated-measures ANOVAs revealed significant differen-
ces in MPE across the pre-exposure, initial exposure, final
exposure, and washout phases for all dwell time conditions.
In the short dwell time condition, significant variations were
observed (F3,21¼ 134.537, P < 0.001, x2 ¼ 0.909). Post hoc
comparisons showed that MPE was low during the initial
null-field exposure but increased significantly upon the
introduction of the curl-field (Pbonf < 0.001). Over the expo-
sure phase, MPE decreased significantly (Pbonf < 0.001), and
during the washout phase, MPE showed a significant differ-
ence compared with pre-exposure (Pbonf < 0.001). In the
medium dwell time condition, MPE also showed significant
differences across the phases (F3,21¼ 186.893, P< 0.001, x2 ¼
0.924). During the initial null-field exposure, MPE was low,
but it increased significantly with the introduction of the
curl-field (Pbonf < 0.001). MPE decreased significantly over
the exposure phase (Pbonf < 0.001), and in the washout
phase, MPE remained significantly different from the pre-
exposure phase (Pbonf ¼ 0.002). For the long dwell time con-
dition, significant variations were found (F3,21¼ 101.650, P <

0.001, x2 ¼ 0.889). MPE was initially low during the null-
field exposure and increased significantly with the curl-field

introduction (Pbonf < 0.001). Over the exposure phase, MPE
decreased significantly (Pbonf ¼ 0.002), and the washout
phase showed a significant difference in MPE compared
with the pre-exposure phase (Pbonf¼ 0.026).

Themean force compensation was examined (Fig. 10B) for
the short, medium, and long dwell time conditions. During
the initial null-field exposure, compensation was low in all
dwell time conditions. Upon the introduction of the curl
field, compensation began to increase. By the end of the
curl-field exposure, the compensation had increased for all
dwell time conditions, but less so as dwell time increased.
During the washout phase, compensation values decayed in
all three dwell time conditions.

A repeated-measures ANOVA indicated a significant
increase in force compensation between the final pre-expo-
sure and final exposure levels across all dwell time condi-
tions. In the short dwell time condition, the increase was
highly significant (F1,7¼ 182.743, P < 0.001, x2 ¼ 0.929). For
the medium dwell time condition, a significant increase in
force compensation was also observed (F1,7¼ 30.547, P <
0.001, x2 ¼ 0.664). Similarly, in the long dwell time condi-
tion, a significant increase in force compensation between
the final pre-exposure and final exposure levels was found
(F1,7¼ 39.970, P< 0.001, x2¼ 0.693).

These MPE and force compensation results demonstrate
that participants using passive lead-in contexts could effec-
tively compensate for both opposing curl-field directions,
consistent with the raw trajectory plots shown in Fig. 9.
Although the contextual effect diminished as the dwell time
increased, it decreased less than what was observed in visual
lead-in experiment 1.

Independent Adaptation to Opposing Force Fields

The maximum perpendicular error (MPE) and force com-
pensation were examined for each of the two curl force field
directions for the passive lead-in experiment 2 to test
whether there are differences in the adaptation of the two
field directions (Fig. 11).

Similar trends in theMPE are seen in both curl-field direc-
tions (Fig. 11A). We compared the final exposure MPE across
participants for both curl-field directions within block pairs.
A repeated-measures ANOVA indicated that there were no
significant differences in adaptation across curl-field direc-
tions for the short, medium, and long dwell time conditions.
Their analyses yielded the following statistics: (F1,7¼0.231;

Figure 10.Maximum perpendicular error (MPE) and compensation for the passive lead-in experiment 2. A: overall means ± SE MPE plotted against block
pairs for each of the three dwell-time conditions. B: overall means ± SE percentage of compensation for each of the three dwell-time conditions.
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P ¼ 0.645; x2 ¼ 0.000), (F1,7¼ 3.543; P ¼ 0. 102; x2 ¼ 0.072),
and (F1,7¼ 2.178; P¼ 0. 184; x2 ¼ 0.059), respectively. That is,
participants adapted equally to both force field directions.

We compared the final exposure compensation (Fig. 11B)
in both curl-field directions of block pairs across partici-
pants. A repeated-measures ANOVA indicated that there
were no significant differences for the medium and long
dwell time conditions (F1,7¼0.268; P ¼ 0. 621; x2 ¼ 0.000)
and (F1,7¼ 2.780; P ¼ 0.139; x2 ¼ 0.067, respectively).
However, a significant difference was observed in the short
dwell time condition (F1,7¼6.078; P¼ 0.043; x2¼ 0.210).

Comparison of Results across Experimental Conditions

Adaptation during curl field exposure.
To contrast adaptation across the two experiments, we
performed comparisons of the levels of curl-field compen-
sation achieved in both the visual lead-in experiment 1 and
passive lead-in experiment 2 (Fig. 12). At short dwell times
(Fig. 12A), compensation levels increased similarly in both
experiments during curl-field exposure. At medium dwell
times (Fig. 12B), a slight divergence emerged, with the vis-
ual lead-in experiment 1 showing a slower increase in
learning compared with the passive lead-in experiment 2.
This difference became more pronounced at long dwell
times (Fig. 12C), where the visual lead-in experiment 1
exhibited noticeably less learning than the passive lead-in
experiment 2.

An ANOVA analysis of the last 10 curl-field exposure
trial blocks was performed for both the visual lead-in
experiment 1 and the passive lead-in experiment 2. Final
exposure compensation showed significant variations

between dwell-time conditions (F2 ¼ 14.685; P < 0.001;
x2 ¼ 0.311) and experimental conditions (F1 ¼ 10.257; P ¼
0.003; x2 ¼ 0.105). Post hoc comparisons revealed no sig-
nificant differences between visual lead-in experiment 1
and passive lead-in experiment 2 for short and medium
dwell times (Pbonf ¼ 1.000). However, there was a signifi-
cant difference for long dwell times (Pbonf ¼ 0.014).

We note that, even though the passive modality generally
exhibited longer mean dwell time values than the visual
modality, we still saw significantly greater adaptation in the
passive lead-in experiment 2 than in the visual lead-in
experiment 1. This indicates that it is the form of the lead-in
modality that is responsible for the observed differences
in adaptation achieved since the passive lead-in experiment
2 showed greater adaptation, even though dwell times were
slightly longer in the passive condition compared with the
visual condition. These findings indicate a more rapid decay
of contextual effectiveness when using visual lead-in cues
compared with passive lead-ins. Furthermore, the data sug-
gest that the effectiveness of visual lead-in cues substantially
declines when dwell times exceed�800ms.

Comparison with previous studies.
To further examine the relationship between lead-in modal-
ity and the decay of compensation as a function of dwell
time across different experimental conditions, the mean
compensation values calculated in channel trials over the
last 10 blocks of curl-field exposure trials were plotted
against the mean of their measured dwell times.

Figures 4 and 8 show that the histograms of dwell times for
the different experimental conditions do not follow Gaussian
distributions; indeed, some exhibit substantial asymmetry.

Figure 11. Independent adaptation to opposing force fields for the passive lead-in. The means ± SE maximum perpendicular error (MPE) and force com-
pensation for both opposing curl-fields. A: means ± SE MPE for short, medium, and long dwell times. B: means ± SE compensation for short, medium,
and long dwell times.
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Therefore, themean and standard deviation do not constitute
sufficient statistics to represent dwell time distributions.
However, we note from observing the histograms that the
mean andmedian values do not substantially differ, although
themode values, representing the peak of each histogram, are
certainly shorter. For simplicity, we chose the mean dwell
time as a representativemetric for plotting.

As well as performing this analysis on the passive and vis-
ual lead-in data collected in the current study, we also relate
our new results to previous work that examined the effect of
dwell time on an active lead-in context, which also reported
compensation values achieved with short dwell times for
passive and visual lead-in contexts (15). To do so, we fully re-
analyzed the appropriate raw data generated in the former
study. A detailed breakdown of the compensation, MPE, and
dwell time values for the last 10 blocks of exposure trials for
all current experimental conditions and relevant previous
experimental conditions is provided in Table 2. To facilitate
comparison between the current data and reanalyzed
data, dwell time conditions were grouped into four bins
based on their durations: very short (“V-Short”), short,
medium, and long. This arbitrary bin selection was intended
only to broadly classify dwell times, and since not all condi-
tions arose in both sets of experiments, the tables are conse-
quently not fully populated.

Although the mean duration of the lead-in movements
differs across the visual, passive, and active experiments
(see Table 3), these differences did not substantially affect
the level of adaptation achieved at short dwell times across
the experimental conditions, since the training and testing
dwell times were similar.

Figure 12D highlights a clear contrast between the vis-
ual, passive, and active lead-in experiments. In the visual
lead-in experiment 1, compensation declined markedly as
dwell time increased. In contrast, although the passive
lead-in experiment 2 also showed a decline in compensa-
tion with increasing dwell time, the slope was shallower
(i.e., less negative), and overall compensation levels
remained consistently higher than those observed in the
visual condition. After reanalysis, the previously col-
lected active data exhibit a decline in force compensation
with increasing dwell time, falling between the compen-
sation values observed in the new passive and visual
lead-in conditions.

The reanalysis of the low-dwell passive and visual
conditions from the former study (also shown in
Fig. 12D as individual data points) aligns well with the
trends seen in the new passive and visual data, consti-
tuting data points with higher compensation values at
lower dwell times.

Figure 12. Comparison of adaptation
across the experiments. Plot of means ±
SE compensation values for the visual
lead-in experiment 1 and the passive lead-
in experiment 2 contexts across the three
different dwell time conditions. A–C: force
compensation against block pairs for both
experiments at short, medium, and long
dwell times, respectively. D: final level of
curl-field compensation (means ± SE) plot-
ted against the measured dwell time
(means ± SE). This includes results from
both experimental conditions in the cur-
rent study, as well as results from a previ-
ous study that examined an active lead-in
context (15). In addition, the plot includes
low dwell time results for visual and pas-
sive lead-ins from the previous study.
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DISCUSSION

Summary

Using an interference paradigm, we investigated the con-
textual effects of visual and passive lead-in movements on
motor adaptation as a function of dwell time. Our results
revealed significant differences between the two experimental
conditions. We found that in both lead-in modalities, the
level of adaptation achieved decreased as dwell time
increased. However, visual lead-in movements showed a
greater decline compared with passive lead-in move-
ments. Although adaptation in both visual and passive
lead-in conditions was similar at shorter dwell times, the
level of adaptation achieved with visual lead-ins became
much smaller when measured dwell time exceeded �800
ms. In contrast, significantly more adaptation was present
in the passive lead-in condition.

Comparison with a Former Lead-In Study

Our current study closely followed the experimental pro-
tocol of the previous active lead-in movement study on the
effect of dwell time (15), but we refined the analysis methods.
Specifically, we examined the final levels of compensation
using the last 10 blocks of field exposure rather than the last
25, providing a more precise estimate of the final adaptation
achieved in each experimental condition. In addition, we
calculated compensation by regressing movement velocity
against measured force instead of using the ratio of velocity
to force, and we implemented a more robust method to esti-
mate dwell time. To enable meaningful comparisons with
previous results, we reanalyzed the relevant data from the
earlier study using these updatedmethods.

First, we observed that compensation values for passive
and visual lead-ins from the former study under low dwell
time conditions closely matched the trends seen in our vis-
ual and passive data (see Fig. 12). Furthermore, our new
results align with previous findings on active lead-in con-
textual movements, which demonstrated a decline in the

contextual effect and a subsequent reduction in adapta-
tion as dwell time increased (15). We note that compensa-
tion levels in the active lead-in condition were slightly
lower than those in the passive condition, but higher than
in the visual condition. In the former case, the key factor
affecting learning may arise from the higher levels of lead-
in variability in the active condition compared with the
passive lead-in condition. Previous studies have shown
that increased variability reduces adaptation (23), which
suggests that the lower compensation observed with active
lead-ins may be due to the higher variability inherent in
self-generated movements compared with the consistent,
system-generated passive movements. The fact that both
passive and active lead-in movements achieve high levels
of compensation suggests that visual lead-in is a funda-
mentally weaker effect.

Effectiveness of Contextual Cues

A contextual cue is a type of information used by themotor
system that can influencemotor adaptation but is not directly
involved in a movement. It has been proposed (38) that there
are twomain types of contextual cues: direct and indirect. The
indirect cues, such as color, often have little effect on implicit
motor adaptation (13, 38). However, direct cues, which might
connect to state estimation, have strong contextual effects and
drive implicit motor adaptation. Many dynamic learning dual-
adaptation interference studies have shown that sensory infor-
mation related tomovement has a strong contextual cue effect.
Using different physical workspace locations as a context
works effectively, as does simply showing different visual loca-
tions in the workspace when the actual movements are always
made in the same location (13). Immediate pastmovement (15)
or planned futuremovement also has a very strong contextual
effect (39, 40). However, the actual movement itself needs to
be somehow associated with the task, and peripheral move-
ment has amuch weaker effect than something that looks like
a contiguous movement carried out by the participant. It was
also found that past visual or passive lead-in movement

Table 2. Measured mean and standard error and dwell times and compensation values over the last 10 blocks of
channel trials in the exposure phase for the visual, passive, and active lead-in conditions (means ± SE)

Visual Lead-In Passive Lead-in Active Lead-in

COMP Means ± SE (SD) DWELL Means ± SE (SD) COMP Means ± SE (SD) DWELL Means ± SE (SD) COMP Means ± SE (SD) DWELL Means ± SE (SD)

V-Short 68.0 ± 8.0% 167.8 ± 3.1 ms 76.5 ± 3.2% 212.5 ± 8.7 ms 74.3 ± 5.2% (23.2%) 130.3 ± 22.9 ms (69.5 ms)
Short 65.1 ± 6.0%. (30.8%) 270.7 ± 10.7 ms (56.2 ms) 67.7 ± 4.0% (22.5%) 291.9 ± 12.2 ms (72.0 ms)
Medium 40.8 ± 9.5% (43.0%) 442.9 ± 8.4 ms (82.2 ms) 56.2 ± 6.3% (32.3%) 503.0 ± 17.5 ms (100.3 ms) 44.785 ± 5.1214% (35.141%) 413.6 ± 14.8 ms (83.6 ms)
Long 15.6 ± 4.1% (35.2%) 802.6 ± 37.6 ms (200.3 ms) 47.8 ± 7.0% (40.6%) 774.15 ± 16.9 ms (100.5 ms) 38.4 ± 10.0% (34.8%) 887.3 ± 25.9 ms (137.1 ms)

The standard deviation (SD) over all the trials is also provided.

Table 3. Measured lead-in movement durations over the last 10 blocks of exposure trials for the visual, passive, and
active lead-in conditions (means ± SE)

Visual Lead-In

Lead-In Duration Means ± SE (SD)

Passive Lead-In

Lead-In Duration Means ± SE (SD)

Active Lead-In

Lead-In Duration Means ± SE (SD)

V-Short 551.1 ± 18.1 ms (48.1 ms) 582.0 ± 23.7 ms (54.5 ms) 204.0 ± 12.4 ms (43.8 ms)
Short 514.7 ± 0.1 ms (0.7 ms) 571.1 ± 1.8 ms (15.1 ms)
Medium 514.6 ± 0.1 ms (0.7 ms) 570.8 ± 1.9 ms (15.41 ms) 224.8 ± 7.3 ms (33.0 ms)
Long 514.7 ± 0.1 ms (0.7 ms) 571.0 ± 2.6 ms (16.6 ms) 230.7 ± 12.3 ms (49.0 ms)

We note that the SE and SD values for the visual and passive lead-in conditions are small because they are highly consistent, since
they are generated by the robotic manipulandum system.
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strongly affects motor learning in subsequent movements. In
contrast, peripheral visual movement has a much weaker
effect. Here we show that, similar to actively generated lead-in
movements, both passive lead-in and visual lead-in move-
ments produce strong contextual cue effects that decay with
increasing dwell times between the lead-in and adaptation
movement.

Visual and Proprioceptive Feedback Pathways

The control of active, visually guided arm movements,
including the point-to-point movements examined in this
study, generally involve integrating visual and proprioceptive
sensory feedbackwithin the brain. Visual information requires
complex processing in the visual cortex and higher brain cen-
ters, introducing delays and potential degradation over time
(41–43). In visually guided movements, vision provides not
only the location of the desired target but also an online indi-
cation of limb position and its movement (44). Visual feed-
back is essential for planning and guiding movements over
extended time scales. However, even the fastest visual feed-
back is subject to delays of at least 100 to 150 ms due to the
pathways and extensive processing required (45, 46).

In contrast, proprioceptive information, which originates
from sensors in the muscle fibers, tendons, and joints, is
transmittedmuch faster (47), resulting in delays of�30 to 50
ms (48). Proprioception provides continuous, lower-latency
feedback about the body’s position and movement (47, 49).
Such proprioceptive feedback is crucial for rapid, reflexive
compensatory movements and multijoint control, as is
clearly demonstrated in patients who experience deficits in
proprioception (50).

Thus, visual feedback has a longer time delay compared
with proprioceptive feedback, primarily due to the extended
time required to process signals, especially for pathways that
go through the visual cortex and their subsequent integration
into higher brain centers (51). In general, different sensory feed-
back delays can range from 30 to 250ms (52, 53). These differ-
ences in delay times significantly influence how each type of
feedback is used inmotor control. However, despite the longer
delays for visual feedback, it often provides critical information
regarding the task goals. Therefore, effectivemotor control typ-
ically requires the integration of both visual and proprioceptive
feedback to achieve satisfactory performance.

It is known that humans can integrate visual and haptic
information for the purpose of perception (54) and are able to
use this to guide the generation of movement (55). However, it
has also been shown that during movement, healthy humans
primarily rely on dynamic estimates of hand motion derived
from limb afferent feedback, even when visual information
about limb movement is accessible (56). It has been proposed
that this is the case because the nervous system considers both
sensory variances and temporal delays to achieve optimalmul-
tisensory integration and feedback control. Therefore, there is a
bias toward using proprioceptive signals rather than the visual
signals, due to the former’s shorter latency. Interestingly, our
study also shows clear differences in the contextual effect of
passive and lead-in movements. Here, the effect of visual-only
lead-in movements decays faster than that of passive lead-in
movements. These differencesmay also arise due to the longer
delays in visual processing, which could mean that we weigh
this information less in our estimates of the current state.

The Relevance of Visual and Proprioceptive Feedback

As well as differences in time delays between different
modalities of sensory input, other sources of uncertainty
might arise due to the phenomena being sensed. Visual feed-
back depends on observationsmade in the environment and
is affected by external environmental conditions, such as
illumination levels, which can change rapidly and unpre-
dictably. Importantly, visual feedback not only corresponds
to signals from arm movements, but also from other move-
ments in the environment. Consequently, much visual infor-
mation may only be indirectly relevant for motor control
purposes. As a general principle, it is known that exposure to
a more variable range of experiences influences and widens
generalization (57). Thus, a broader range of visual experi-
ence is consistent with the wider and shallower generaliza-
tion pattern seen for visual lead-inmovements.

In contrast, proprioceptive information arises internally
within the body, making it directly related to arm move-
ment. It is also less susceptible to external environmental
changes, making it more task-relevant and reliable. In addi-
tion, there is a greater inherent processing delay in the visual
pathway, and visual information may arise from multiple
observations in the environment. By comparison, the pro-
prioceptive pathway has a shorter inherent delay and relates
more directly to the state of the arm. As the time delay
increases, uncertainty in the relevance of feedback also
increases, but this effect is greater for visual input than for
proprioceptive input. This hypothesis helps explain why the
directional tuning observed for visual contextual lead-in
movements was considerably wider than that of passive
movements (16, 18). In the visual condition, there is more
uncertainty about the prior movement direction due to the
longer processing delay and the observational uncertainty
arising from the nature of the environment. We propose that
this increased observational uncertainty and longer delays
in visual feedback explain the clear difference in the strength
of contextual cues with the visual lead-in. The increasing
dwell times produce a much weaker integration into the pre-
dictive controller than for passivemovements.
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