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Abstract In control, stability captures the reproducibility of
motions and the robustness to environmental and internal per-
turbations. This paper examines how stability can be eval-
uated in human movements, and possible mechanisms by
which humans ensure stability. First, a measure of stability
is introduced, which is simple to apply to human movements
and corresponds to Lyapunov exponents. Its application to
real data shows that it is able to distinguish effectively be-
tween stable and unstable dynamics. A computational model
is then used to investigate stability in human arm movements,
which takes into account motor output variability and com-
putes the force to perform a task according to an inverse
dynamics model. Simulation results suggest that even a large
time delay does not affect movement stability as long as the
reflex feedback is small relative to muscle elasticity. Sim-
ulations are also used to demonstrate that existing learning
schemes, using a monotonic antisymmetric update law, can-
not compensate for unstable dynamics. An impedance com-
pensation algorithm is introduced to learn unstable dynamics,
which produces similar adaptation responses to those found
in experiments.
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1 Introduction

1.1 Motivation and goal

Stability is critical for successful human movements. In an
unstable system, slight variation in the initial conditions,
noise in the control signal or external perturbations can lead
to unpredictable, irreproducible and inconsistent execution of
motor tasks. In contrast, in a stable system, the same or sim-
ilar motor commands will lead to similar movements despite
small disturbances. This means that the movement outcome
can be predicted and the movement can be planned. It also
becomes possible to form a library of motor commands corre-
sponding to various tasks. Stability is particularly important
for human motion because of the large variability in con-
secutive performances of the same action, i.e. motor output
variability, and because we perform most actions in interac-
tion with the environment which may add variability.

Stability has been rigorously defined in dynamical sys-
tems theory. Lyapunov stability means that after a small per-
turbation a response or movement trajectory will remain close
to the undisturbed response/trajectory; asymptotic stability
means that it will in addition converge to the undisturbed
response/trajectory; exponential stability means that it will
converge at an exponential rate (Vidyasagar 1993). However
these mathematical definitions cannot be applied directly to
the control of human motions. First, they require infinite time,
whereas human motor control, as with any physical system,
produces movements of finite duration. Even when adapted
to finite time movements, the above stability concepts have
limited applicability to the control of human motion, for rea-
sons which will be explained below.

This paper will examine how stability can be quantita-
tively established in an experimental evaluation of human
movements, and will characterize possible mechanisms by
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which humans ensure stability. Towards the end of the move-
ment, motion stability depends on corrective movements.
This paper focuses on stability provided by muscle properties
and stretch reflexes and, therefore, will analyze stability over
the entire movement rather than only at the end.

1.2 Stable and unstable tasks

Interaction-free arm movements are generally stable, in the
sense that when the hand is slightly perturbed during the
movement it tends to return to the undisturbed trajectory (Mil-
ner 1993; Won and Hogan 1995; Gomi and Kawato 1997),
corresponding to asymptotic or exponential stability. This
‘stability’stems mainly from muscle elasticity and the stretch
reflex, which produce a restoring force towards the undis-
turbed trajectory. However, the stabilization provided by re-
flexes is limited by a time delay of at least 60 ms, which means
that in some cases reflexes can create instability (Jacks et al.
1988). Moreover, to manipulate objects or use tools we have
to interact with the environment and compensate for forces
arising from it. Ultimately, it is the interaction between our
limbs and the environment that determines whether or not a
movement will be stable (Colgate and Hogan 1988).

While tasks such as opening a door involve a stable inter-
action with the environment, many common tasks, in particu-
lar, tasks involving tools, are intrinsically unstable (Rancourt
and Hogan 2001). Drilling, carving and keeping a screwdriver
in the slot of a screw are just a few examples of unstable tasks.
Unstable tasks are more difficult to control than stable tasks,
as neuromotor noise (Slifkin and Newell 1999; Osu et al.
2004) or material irregularities can cause the tool to slip unex-
pectedly to one side or the other.

1.3 Common methods to infer stability are impractical

In principle, stability could be inferred similarly to the mathe-
matical definition, from observing movement trajectories and
response to perturbations. However, in human movements
the trajectory is different from trial to trial so an undisturbed
trajectory cannot be observed directly; in turn it is not possi-
ble to infer stability by comparing pairs of disturbed versus
undisturbed trajectories. Furthermore, human motor control
is a non-autonomous dynamic system, in which the command
could vary from trial to trial, so we do not even know which
dynamical system should be used.

In motor task execution, stability depends on the end-
point impedance that results from the spring-like property of
muscles and (stretch) reflexes. Endpoint stiffness can be eval-
uated at static positions by measuring the restoring force to
perturbations of the hand position (Mussa-Ivaldi et al. 1985).
We have recently extended this method to estimate imped-
ance during movement (Gomi and Kawato 1997; Burdet et al.
2000), although it requires at least 40 repetitions of the same
movement to measure stiffness at one point during move-
ment.

1.4 Motor learning mechanisms

Humansconstantlyadapt theirmovements tochangesof inter-
nal and external conditions. Learning in novel environments,
where environment interaction with the arm is stable, has
been investigated extensively (Shadmehr and Mussa-Ivaldi
1994; Lackner and Dizio 1994; Shadmehr and Holcomb
1997; Krakauer et al. 1999; Kawato 1999). The experimental
data show that subjects learn a feedforward compensation
force necessary to overcome external dynamics. We have
recently examined learning in a divergent force field that
produced an unstable interaction with the arm (Burdet et al.
2001), and shown that humans improve task performance and
overcome instability by increasing the mechanical impedance
of the arm selectively in the unstable direction. Altogether,
these results suggest that humans form appropriate internal
models to compensate for force and instability arising from
the interaction with the environment.

Several algorithms have been proposed to model motor
learning (Albus 1971; Kawato et al. 1987; Katayama and
Kawato 1993; Bhushan and Shadmehr 1999; Sanner and
Kosha 1999). These learning schemes have been shown to
work in stable tasks. However, no unstable task has been
investigated so far.

1.5 Contributions and outline

The first contribution of this paper is to clarify the notion of
stability in human motions. The notion of stability is illus-
trated using a computer model of arm movement control
which computes the force to perform a task according to
an inverse dynamics model, and comparing simulations with
movements recorded during experiments (Burdet et al. 2001;
Osu et al. 2003). This model enables us to study stability de-
spite motor output variability and adaptation, which normally
mask the typical criteria needed to demonstrate Lyapunov
stability in real human movements. It can also be used to
examine how stability depends on the time delay of reflexes.

The second contribution is to provide a quantitative mea-
sure that can be computed from measured trajectories. The
problem caused by motion variability is overcome by consid-
ering an ensemble of trajectories, and characterizing a proba-
bility distribution over the ensemble similar to Franklin et al.
(2003b). This provides a stability measure roughly equivalent
to the Lyapunov exponent.

The third contribution is to investigate the learning mech-
anisms for unstable interactions; in particular, to examine
whether previous algorithms represent a plausible strategy
in unstable situations. Our results suggest that impedance
compensation is essential to perform stable movements in
unstable interactions and we introduce a learning algorithm
producing an adaptation response similar to that observed in
human movements.

The remainder of the paper is organized as follows. Sec-
tion 2 analyzes the stability of movements performed in inter-
action with the environment. The computational model of
the control of arm movements and its implementation are
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presented in Sects. 2.1 and 2.2, respectively. This model is
used in Sect. 2.3 to define the meaning of stability in human
arm movements. In Sect. 2.4, a measure is introduced and
used to infer stability using recorded data. The influence of
time delay on stability is examined in Sect. 2.5. Thereafter,
Sect. 3 examines related adaptation mechanisms. Sect. 3.1
demonstrates that existing learning schemes cannot compen-
sate for unstable dynamics, and Sect. 3.2 describes necessary
impedance compensation mechanisms.

2 Motion stability

2.1 Computational model of arm movements

The (joint space) model introduced in this section will be used
to illustrate various stability concepts and measures, and to
elucidate the role of learning, feedforward and feedback con-
trol in arm movements. In the following description scalars s
are italic, vectors v are bold and matrices M are bold capitals.

Let τm(t) represent the k-dimensional vector of torques
produced by muscles on the k joints of a limb, and q(t)
the resulting joint angle trajectories. We assume that mus-
cle torque/force is produced according to an inverse dynam-
ics model (IDM) of the task (Shadmehr and Mussa-Ivaldi
1994). This corresponds to the experience gained in several
movements and constitutes a plan of action τ IDM, which con-
sists of the forces/torques to move the arm as well as learned
forces/torques required to overcome environmental dynam-
ics for the particular task.

When one repeats an action several times, the trajectory
is never exactly the same: movements with the same action
plan will have some variation (Slifkin and Newell 1999; Osu
et al. 2004). We assume that the muscle force is subject to
motor output variability, resulting in

τm(t) = τ IDM(t) + �τ (t), 0 ≤ t ≤ T , (1)

where �τ (t) is a random variable. The torques are modeled
as continuous functions of time, and T is the time horizon
over which the task is completed.

τ IDM(t) and �τ (t) could be generated using some model.
However, to compare simulation results with available data
recorded in experiments performed by human subjects, we
prefer to identify τ IDM(t) and �τ (t) from these data. τ IDM is
identified as the empirical mean of N observations of muscle
torque {τ (1)

m , . . . , τ (N)
m } required to execute the task under

free movement conditions, i.e.,

τ IDM = 1

N

N∑

i=1

τ (i)
m . (2)

Noise waveforms �τ (t) are randomly selected from the set
{�τ (1), . . . , �τ (N)} = {τ (1)

m − τ IDM, . . . , τ (N)
m − τ IDM} to

generate a movement in various environment dynamics. We
make the simplifying assumption that torque variability will

not change when the external conditions of the task are var-
ied from the conditions prevailing under the free movement
trials.

The CNS is a learning system which continuously adapts
to novel dynamics resulting from the interaction with the
environment. When the environment is not changing, the
CNS adapts the control and produces movements with similar
trajectories in consecutive trials. Let q∗(t) be the trajectory
in learned dynamics, corresponding to the applied torque τm:

f(q∗(t), q̇∗(t), q̈∗(t)) = τm(t) = τ IDM(t)

+�τ (t), 0 ≤ t ≤ T , (3)

where f(q(t), q̇(t), q̈(t)) represents the torque necessary to
move the limb and depends on the joint position q, velocity
q̇(t) and acceleration q̈(t). The responses q∗(t), q̇∗(t), and
q̈∗(t) are random variables.

Changes in the environment dynamicsτE(q(t), q̇(t), q̈(t))
modify the trajectory from q∗(t) to q(t) and in turn cause
restoring forces r (Milner and Cloutier 1993; Won and Hogan
1995):

τE + f(q, q̇, q̈) = τm = τ IDM + �τ + r(q, q̇, q∗, q̇∗). (4)

The restoring force r is produced by muscle elasticity re as
well as reflex forces rr

r = re + rr. (5)

For simplicity, we assume that the torque produced by both
reflex forces and muscle elasticity can be modeled as linear
functions r = r(e, ė) of the trajectory deviation e = q − q∗
and its derivative ė = q̇ − q̇∗. Muscle elasticity is modeled
as

re = K (e + κd ė), (6)

where K is the intrinsic joint stiffness matrix, which increases
with torque, i.e., with muscle activation (Tee et al. 2004).
Reflexes are modeled as

rr(t) = G [e(t − φ) + gd ė(t − φ)] . (7)

where G is the reflex gain matrix and φ the time delay.
Equations (1–7) can be used to simulate movements of the

(possibly redundant) limbs under various scenarios for inter-
action forces and motor variability. This model for arm move-
ments interacting with the environment, sketched in Fig. 1a
extends the model of Shadmehr and Mussa-Ivaldi (1994) in
three respects:

– it considers motor noise inherent to motion generation.
– it incorporates a more realistic impedance model, that in-

cludes both a dependence on torque (due to muscle acti-
vation) and the time delay inherent in reflexes.

– the inverse dynamics model depends on the planned rather
than on the executed trajectory. This seems to be more
compatible with the nature of a feedforward motor com-
mand and the significant time delay in the sensory path-
ways.

Comparison of the simulated trajectories (Fig. 2) with
real trajectories observed under equivalent conditions (Osu
et al. 2003), as well as comparison of simulated and measured
endpoint impedance (Tee et al. 2004), show that this simple
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Fig. 1 Simulation of human movements to investigate motor control and learning. a The scheme of neural control and feedback error learning in
novel dynamics. b Movement task involves reaching of hand towards target point while an external force is exerted on the hand through a robotic
interface

model predicts the responses of the human arm interacting
with novel environmental dynamics well.

2.2 Model’s implementation

The simulations were compared with available data on human
arm movements and adaptation to stable and unstable dynam-
ics from Burdet et al. (2001), Franklin et al. (2003a, b) and
Osu et al. (2003). The task considered is to move the arm
ahead of the body from (0, 31) cm to (0, 56) cm, as indi-
cated in Fig. 1b, in approximately 600 ms.

The planned torques and motor output variability were
identified from N = 50 trials in free conditions. The hor-
izontal arm movements at shoulder height use a two-link
mechanical structure with parameters defined in Table 1. For
the horizontal motions of interest, gravity can be neglected,
and the task dynamics are modeled by

f(q, q̇, q̈) := H(q)q̈ + C(q, q̇)q̇ + τ PFM, (8)
where

H(q) =





J1 + J2 + M1 l2
m1 + M2 (l2

1 + l2
m2 J2 + M2 (l2

m2 + l1 lm2

+2 l1 lm2 cos q2) cos q2)

J2 + M2 (l2
m2 + l1 lm2 cos q2) J2 + M2 l2

m2





(9)

is the inertia matrix and

C(q, q̇)q̇ =
[

M2 l1 lm2 q̇2 (2 q̇1 + q̇2) sin(q2)

M2 l1 lm2 q̇2
1 sin(q2)

]
(10)

is the term corresponding to Coriolis and centrifugal forces.
q1 and q2 denote the shoulder joint angle and elbow joint
angle, respectively. The experiments reported in Burdet et al.
(2001), Franklin et al. (2003a, b), and Osu et al. (2003) used
the PFM robotic interface to produce force fields on the hand
during movement. The PFM is not completely ‘transparent’
to the user, thus the corresponding dynamics τ PFM have to
be taken into account in the simulation. τ PFM was identified
from test trajectories with a large dynamic variation (Slotine
1991) and modeled as

τPFM = J(q)T (ME ẍ + Dd ẋ + tanh(200 Ds ẋ)) (11)

where

ME =
[

1.516 0
0 1.404

]
Ns2/m,

Dd =
[

10.247 0
0 7.592

]
Ns/m,

Ds =
[

0.102 0
0 0.356

]
Ns/m,

ẍ and ẋ represent Cartesian acceleration and velocity, respec-
tively. The Jacobian matrix transforming endpoint force into
joint torque (De Wit et al. 1996) is given by
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Fig. 2 Motion stability. a Simulated hand trajectories in null field (NF) and in two force fields, the velocity dependent field (VF) and divergent
field (DF), without learning. b The VF interaction is asymptotically stable, as after a perturbation the trajectory remains close to the undisturbed
trajectory and eventually converges to it. On the other hand, the interaction with the DF is unstable, as shown by the diverging trajectory after a
small perturbation. The perturbation is a 3 N force pulse in the positive or negative x-direction

J(q) =
(

∂xi

∂qj

)

=
[−l1 sin q1 − l2 sin(q1 + q2) −l2 sin(q1 + q2)

l1 cos q1 + l2 cos(q1 + q2) l2 cos(q1 + q2)

]
.

(12)

For the torque resulting from muscle elasticity, a ratio
κd = 1

12 s of joint damping to stiffness was used, correspond-
ing to a larger dependence on position error (Mirbagheri et
al. 2000). K was used as the mean stiffness of five subjects
measured in Gomi and Osu (1998):
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Table 1 Parameters of the two link structure of Fig. 1b used in the simulation

Mass (kg) Length (m) Center of mass from proximal joint (m) Mass moment of inertia (kg m2)

Upper arm 1.93 0.31 0.165 0.0141
Forearm 1.52 0.34 0.19 0.0188

K(|τm|) =
[

10.8 + 3.18 |τ1| 2.83 + 2.15 |τ2|
2.51 + 2.34 |τ2| 8.67 + 6.18 |τ2|

]
Nm/rad

(13)

where τ1 and τ2 denote shoulder and elbow torques, respec-
tively. For the reflexes, φ = 60 ms was used as default for the
time delay of the reflex response and gd = 2s was used as
ratio of joint damping to stiffness, corresponding to a larger
dependence on velocity error (Mirbagheri et al. 2000). G =
1

50 K Nm/rad produces reflex gains increasing with muscle
activation (Sinkjaer et al. 1988) such that the reflex contribu-
tion is approximately 25% of the total restoring force (Carter
et al. 1990).

The simulations in this paper used simple Euler integra-
tion with 1 ms time step.

2.3 Stability in simulated human movements

This section explains what stability means for human move-
ments, and illustrates the stability concepts using simulated
arm movements. To this purpose, we examine the effect of
a small perturbation (δ) on motion. To distinguish this small
“random” perturbation from reproducible dynamics τE we
rewrite Eq. 4 as

δ + τE + f(q, q̇, q̈) = τ IDM + �τ + r(q, q̇, q∗, q̇∗). (14)

The aim is to arrive at a definition and measure of stability
that can be used in an experimental context, hence the stabil-
ity notion must be computable from the measurements, using
a relatively small number of trials.

In free motion, i.e., without external force, the trajectory
corresponding to τ IDM is approximately a straight line tra-
jectory from the start to the target with a bell-shaped veloc-
ity profile. Non-negligible variations arise in repeated trials,
but the ensemble of trajectories occupy a narrow cone-shape
around the straight line connecting the start point with the tar-
get (see Fig. 2a). The variation in the start point is neglected
corresponding to the experimental conditions. The variability
from the ‘planned’ straight line trajectory does not imply that
the free movement trajectory is unstable. Figure 2b clearly
illustrates that small perturbations along the trajectory do not
affect the entire trajectory, but are limited in time, suggesting
that the planned task is stable and that the trajectory acts as
an attractor.

The interaction with external dynamics shows different
patterns. For example, when a position dependent divergent
force field (DF) defined by

τE = JT FDF , FDF = −
[

450 0
0 0

]
x (15)

is exerting a force FDF on the hand during movement, we
observe that the hand is pushed away from the straight line
trajectory. The external dynamics amplify the motor torque
variability and the trajectories occupy a far larger neighbor-
hood around the straight line connecting start and end point
(see Fig. 2a). The interaction with the external force field DF
(Eq. 15) leads to instability, as is confirmed by the divergence
after small perturbations applied during movement (Fig. 2b).

Not every external force interaction destabilizes. Con-
sider for example a velocity dependent external force (VF)
defined by

τE = JT FV F , FV F = −
[

13 −18
18 13

]
ẋ. (16)

Under the influence of this force field, the trajectories system-
atically deviate left from the planned straight line trajectory.
Nevertheless, the task is successfully performed in that the
end point is reached. Moreover as is illustrated in Fig. 2b,
small (time localized) perturbations lead to small deviations
overall and the perturbed trajectories also satisfactorily reach
the end point. We conclude that the VF leads to a trajec-
tory that is stable although it differs from the interaction free
‘planned’ trajectory.

2.4 Movements deviation as a measure of stability for real
movements

Inferring the stability of a particular response from obser-
vations of the response to perturbations requires the com-
parison of the unperturbed trajectory with the perturbed re-
sponse. In experiments however, it is not possible to know
the undisturbed trajectory exactly, due to the variability in
repeated movements. Alternatively, one can infer stability
from observing the deviation of the set of consecutive trajec-
tories in repeated trials. The size of the set of deviations is
affected by the amount of motor variability and the magni-
tude of unpredictable disturbances along the motion as well
as by the stability properties of the overall system. The devi-
ation will grow with the duration of the observation when
the system is unstable, and remain bounded if the system is
stable.

2.4.1 Simplified stability model

We use a simple conceptual model to illustrate the ideas.
Let y be a co-ordinate along a particular motion path, say
0 ≤ y ≤ 1 (start to finish), which we call the reference path.
Let x be a coordinate locally orthogonal to this reference
path. A new motion trajectory different from the reference
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path due to some perturbation, starting at the same point and
finishing near the end point will have a representation x(y).
A simple model (think of it as a linearization along the refer-
ence path of the dynamics forcing deviation away from the
reference path) may be fitted as

d

dy
x(y) = −λ x(y) + ε; x(0) = 0; 0 ≤ y ≤ 1. (17)

with the solution

x(y) = ε

λ

(
1 − e−λy

)
. (18)

The parameter λ, called the Lyapunov exponent, captures
the stability. A positive Lyapunov exponent indicates stabil-
ity, whereas a negative one indicates unstable dynamic inter-
actions. The term ε captures the variability along the path,
which, in order to simplify matters is assumed to be constant
along the path. The reference path corresponds to zero per-
turbation. The mean deviation of the motion represented by
Eq. 17 is then given by

ea ≡
∫ 1

0
x(y) dy = ε

λ

[
y + e−λy

λ

]y=1

y=0

= ε

λ

(
1 + e−λ

λ
− 1

λ

)
≈ ε

2
− ελ

6
+ O(ελ2). (19)

The mean deviation grows with the size of the perturba-
tion term. Stable interaction dynamics (positive Lyapunov
exponent) decrease the effect of perturbations, and unstable
dynamics (negative Lyapunov exponent) increase its effect.

Comparing the mean deviation along the path for two
different interactions (different Lyapunov exponents, but same
perturbation term) it follows that the difference is approxi-
mately proportional to the difference of the Lyapunov expo-
nents:

e(1)
a − e(2)

a ≈ ε

6

(
λ(2) − λ(1)

) + O(ελ2). (20)

A similar (mathematically more rigorous) treatment con-
sidering ε as a stochastic variable would allow specifying
how many trials would be theoretically required to decide on
stability/instability with a given probability.

2.4.2 Empirical stability

The above discussion shows that stability is qualitatively re-
flected in the fact that trajectories corresponding to differ-
ent trials are similar despite motor output variability. On the
other hand, instability amplifies motor output variability and
results in trajectories that diverge increasingly.1 In line with
the above discussion and to more quantitatively capture sta-
bility we propose using the mean absolute error of a family of
N movements relative to the mean path as a stability measure:

1 In some exceptional (i.e., low probability) cases, deviation caused
by instability may be masked by the deviation due to motor output
variability.

µs = 1

N

N∑

i=1

e(i)
a , (21)

where

e(i)
a = 1

L

∫ Y

0
|x(i) − x̄| dy. (22)

The deviation from neutral is measured with respect to the
position along the y-axis, i.e. along the line from the starting
point to the target, and not with respect to time. The deviation
measured in the x-direction is x(i)(y), which corresponds to
i-th trial. x̄(y) is the mean over N trials and plays the role of
the reference trajectory. Y is the y-displacement. The abso-
lute error ea corresponds to the area between the path for the
actual movement and the mean trajectory normalized by the
path length L.

As is clear from the above discussion, such a measure
is not equivalent to Lyapunov (or asymptotic or exponential)
stability, but it encapsulates stability well. Furthermore, some
instability may be masked by the variability between trials,
i.e., will not appear in the deviation. Deviation alone is not
an indication of stability as the size obviously depends on
the interaction as well. However, deviation may be a more
plausible criterion for physiological stability than formal cri-
teria for stability: while there is no evidence that the central
nervous system (CNS) is concerned with formal stability, the
magnitude of trajectory deviation may well be considered
by the CNS for planning motion (Burdet and Milner 1998;
Harris and Wolpert 1998). Low deviation is critical for suc-
cessful actions, as it means that movements corresponding
to an action will always be similar, such that this action can
be planned and the small variations can be corrected during
movement.

To illustrate how this measure can be used to infer sta-
bility in real movements, we apply it to motions measured
in interaction with the force fields of Eqs. 15 and 16 (Burdet
et al. 2001; Osu et al. 2003). The mean stability measure
is computed in NF, VF and DF for each of five subjects. Y
is the y-displacement when 550 ms has elapsed from start
of movement. Considering the variance between the mean
stability measures of the different subjects, a series of one-
way ANOVA tests was used to determine whether the stabil-
ity measure in VF or DF is significantly different from that
in NF (Fig. 3a). As expected, the difference with the VF is
not significant (P > 0.9) while that in the DF is significant
(P < 0.03). This shows that the deviation measure of Eq. 21
can be used to infer motion stability. Fig. 3b shows that our
simulated subject produces movements yielding similar sta-
bility measures in NF, VF and DF to that of subject “DWF”,
whose parameters were used for the simulation.

The difference between the measure in the first 20 move-
ments in the VF (Fig. 5a) and in NF is large ( 1

3 of the mea-
sure in NF) and tends to statistical significance (P = 0.06).
Is the interaction with the VF unstable in initial trials? The
reason for this apparent contradiction is that the CNS rapidly
adapts to the VF. In fact, there is evidence suggesting that
the inverse dynamics model, which compensates for the VF,
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is formed during the initial few trials, and probably changes
substantially with every new trial (Osu et al. 2003; Milner
and Franklin 2005). As a consequence the trajectory changes
from trial to trial. To infer the interaction with novel envi-
ronmental dynamics, it is necessary to perform movements
without permitting learning to occur, for example by intro-
ducing a few random VF trials in a series of NF trials, as for
the “before effects” in Osu et al. (2003).

2.5 Influence of reflex delay on motion stability

One of the main factors affecting the stability of a closed loop
dynamic system is the time delay of feedback. However the
situation may be different for the control of the human arm,
which possesses an “zero-delay feedback loop” constituted
by muscle elasticity, in addition to neural feedback (McIntyre
and Bizzi 1993).
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Fig. 4 Simulations show that feedback error learning cannot compensate for unstable dynamics. a Hand trajectories in a stable interaction (VF)
converge to straight movements after learning, but in an unstable interaction (DF) continue to diverge even after 90 trials. b The inverse dynamics
model (IDM) acquired in DF (black) is small and negligible compared to that in VF (grey). The mean IDM torque pattern over the final 20 trials
is displayed. c While in VF (grey) the IDM is smoothly acquired, in DF (black) the mean torque oscillates about zero with a large variance, i.e.,
no internal model is learned. d Illustration of why the inverse dynamic model oscillates around 0 when feedback error learning is used in unstable
dynamics (Sect. 3.1)

To examine how reflex feedback delay affects motion sta-
bility in our model, we varied the reflex delay and examined
its effect on the deviation to 3 N perturbations applied be-
tween 200 and 400 ms after onset of movements performed
without motor output variability.We measured the mean devi-
ation to perturbations applied in eight directions {0◦, 45◦, 90◦,

135◦, 180◦, 225◦, 270◦, 315◦}. From Fig. 3c it is noted that
trajectory deviation is practically insensitive to even large re-
flex delays. The increase in mean deviation, when delay is
doubled, is small compared to inherent motor output variabil-
ity. This can be explained by the fact that muscle elasticity
plays the primary role in providing stability in our model, as
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it makes up about 75% of total resistance to perturbations.
Effectively, stability decreases with increasing contribution
from neural feedback.

3 Mechanisms to learn stable and unstable dynamics

3.1 A monotonic antisymmetric learning law cannot
compensate for unstable dynamics

Taking the mean of the terms in Eq. 4 over movements (with
�τ = 0 and f(q, q̇, q̈) = τ IDM):

τE = r(q, q̇, q∗, q̇∗), (23)

we see that the mean restoring force r corresponds to the
dynamics of the task not yet incorporated into the IDM.
Therefore, the IDM may be updated from r. Similarly, most
algorithms from neurophysiological models (Albus 1971;
Kawato et al. 1987; Katayama and Kawato 1993; Bhushan
and Shadmehr 1999; Sanner and Kosha 1999) as well as non-
linear adaptive control and iterative learning applied to robot-
ics [see Slotine (1991) and Burdet et al. (1998) for reviews]
perform a minimization of the (square) feedback and have a
monotonic learning law: a positive error produces a positive
change of motor command and a negative error a negative
change, which we, therefore, refer to ‘monotonic antisym-
metric’. To examine how such algorithms function in stable
and unstable interactions, we performed simulations for the
VF and DF using the following learning law:

τ
(i+1)
IDM = τ

(i)
IDM + α (r(i)

e + r(i)
r ) (24)

where i is the trial number and 0 < α < 2 the learning fac-
tor (Burdet et al. 1998). We see in Fig. 4a that such learning
compensates well for theVF.After a few trials the trajectories
become straight and similar to NF movements. In contrast,

learning does not provide any improvement in performance in
the DF. After 100 trials, the movements are still unstable and
most do not reach the target. Because of the unpredictability
of the unstable interaction with the DF, the dynamics experi-
enced on one trial is not indicative of the dynamics of the next
movement. As Figs. 4(b,c) show, the part of the IDM corre-
sponding to the external force will converge to the external
dynamics for the VF and to zero for the DF, i.e., to the mean
dynamics. Figure 4d explains why a monotonic antisymmet-
ric learning law cannot compensate for unstable dynamics.
A small deviation in (for example) the positive direction is
amplified by the instability. On the next trial, torque will be
increased in the opposite direction due to learning in the pre-
vious trial, leading to a movement in the negative direction.
For the same reason, the movement on the subsequent trial
will again be in the opposite direction, i.e., in the positive
direction. This oscillatory behavior, similar to that observed
in experiments (Fig. 5), results in no IDM (Fig. 4b).2

Initial movements measured in VF and DF of Fig. 5 and
Osu et al. (2003), similar to the simulation of Fig. 4, sug-
gest that the neural adaptive control mechanism involves an
antisymmetric learning law. In a stable interaction (VF), the
trajectories converge quickly and monotonically towards the
straight line trajectory, while in an unstable interaction (DF)
the trajectory oscillates to the left and right of the straight
line trajectory.

3.2 Impedance compensation

We have seen that existing learning schemes from human mo-
tor control cannot compensate for unstable dynamics. How-

2 The stability of the above learning mechanism has been studied in
detail in the literature on adaptive control and iterative control, see for
example Anderson et al. (1986). It can be concluded that the learning
will fail in the case of unstable dynamics, but may also fail in other
situations, including some stable dynamics.
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ever, humans can learn unstable dynamics to succeed in unsta-
ble tasks such as carving. Measurement of endpoint stiffness
revealed that humans learn to perform stable movements in
the DF by controlling the impedance magnitude and geome-
try (Burdet et al. 2001). This section presents an algorithm to
realize such impedance compensation. We extend the torque
dependent stiffness matrix KIDM(|τm|) of Eq. 13 to

K = KIDM(|τm|) + KS (25)

such that KIDM(|τm|) is the stiffness that arises due to the
torque generated by the inverse dynamics model and KS is
learned to compensate for destabilization originating in the
environment. After every trial i, the stiffness �K to counter-
act destabilizing environmental forces is identified using

F(i) − F = �K(i) e(i), (26)

where e(i) is the tracking error in i-th trial and F is the mean
endpoint force over the trials. The relation

K(i+1)
S = (1 − λ) K(i)

S + λ �K(i) (27)

with λ ≤ 0.02 realizes a smooth update of KS . The force
signal can be measured directly or can be identified from the
addition of the IDM and the impedance terms (Fig. 1). The
tracking error e may be obtained from kinesthetic informa-
tion provided by muscles spindles and the force by Golgi
tendon organs.

We see in Fig. 6a that this algorithm is able to compen-
sate for destabilization by the DF. The resulting stiffness is
elongated in the direction of instability, corresponding to the
experimental results (Burdet et al. 2001). In fact, stiffness
will always become elongated along the direction of insta-
bility, similar to the joint space model of Tee et al. (2004).
An interesting property of our model is that the magnitude
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of learnt stiffness scales with the magnitude of motor noise
(Fig. 6b), and the variability increases only slightly (Fig. 6c).
To simulate this, the magnitude of the noise waveform was
scaled with a parameter s > 0:

�τ ′ = s�τ . (28)

4 Discussion

Stability is a critical factor for accurate and consistent per-
formance, as it indicates the reproducibility of motions and
the robustness to environmental as well as internal pertur-
bations. However, it is difficult to conceptualize stability in
human motion, in particular due to the variability in trials
corresponding to the same planned action. Whether there is
a trajectory which the neuro-mechanical control is tracking,
is controversial (Gomi and Kawato 1997; Hinder and Milner
2003); if such desired trajectory exists it is difficult to localize
accurately (Won and Hogan 1995; Hodgson and Hogan 2000;
Ostry and Feldman 2003). Therefore, inferring stability by
perturbing the movement and making comparisons with pre-
dictions of undisturbed movements is not a viable strategy.

This study did not require any putative nominal trajec-
tory to assess stability, but quantified stability directly from
the mean deviation in consecutive movements. Application
of this stability measure on real data showed that it can cap-
ture the main features of stability in a non-invasive way for
a variety of interactive conditions. Movement deviation is a
simple criterion to assess performance in a few trials that can
be used, for example, in rehabilitation. Although our stabil-
ity measure is not universal, i.e., particular unstable dynam-
ics may have low deviation and trials with motor adaptation
have to be avoided as instability may be wrongly attributed to
modified motor commands, it can generally distinguish sta-
ble from unstable interactions, and can also be used to infer
learning (Osu et al. 2003).

To examine stability of arm movements interacting with
dynamics, we implemented a joint space model. This model
computes the joint torque produced by muscles according
to an inverse dynamics model of the planned movement,
and considers motor output variability and torque dependent
impedance. Our simulations showed that motion stability, in
the sense of reproducibility, is not much affected by reflex
time delays below 300 ms, i.e., well within the physiological
range. The probable reason is that both muscle elasticity and
reflexes contribute to resistive forces to perturbations, and the
reflex contribution is generally relatively small (Mirbagheri
et al. 2000).

Movement reproducibility may be particularly important
to the CNS, which may use it to learn novel dynamics. In fact,
existing learning schemes require stability and are based on it
(Slotine 1991; Muramatsu and Watanabe 2003). However, in
contrast to the ‘controller’ of human movements, which suc-
cessfully compensates for unstable interactions (Burdet et al.
2001), existing learning schemes based on a monotonic anti-
symmetric update law fail as they can only learn the mean
dynamics but are unable to attenuate very large variations

between trials. The human ‘controller’ may use impedance
compensation in a similar way to what we have proposed in
Sect. 3.2, to ensure successful movements without increas-
ing trajectory deviation, despite the presence of (large) motor
noise.

This model was developed assuming that the musculo-
skeletal system has simple joints and uses a joint-based ap-
proach. It does not consider complex muscle mechanics nor
muscle geometry. Therefore, we expect that it may not be
able to reproduce the adaptation to all environments equally
well. In particular, the coupling of coactivation (i.e., stiff-
ness) and reciprocal activation (i.e., force) is probably more
complex than modeled here (Perreault et al. 2002). We are
currently developing a biologically more realistic model in
muscle space rather than in joint space, which combines con-
trol of force and impedance (Burdet et al. 2004).
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