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Abstract

After committing to an action, a decision-maker can change their mind to revise the action. Such changes of mind can even
occur when the stream of information that led to the action is curtailed at movement onset. This is explained by the time
delays in sensory processing and motor planning which lead to a component at the end of the sensory stream that can only
be processed after initiation. Such post-initiation processing can explain the pattern of changes of mind by asserting an
accumulation of additional evidence to a criterion level, termed change-of-mind bound. Here we test the hypothesis that
physical effort associated with the movement required to change one’s mind affects the level of the change-of-mind bound
and the time for post-initiation deliberation. We varied the effort required to change from one choice target to another in a
reaching movement by varying the geometry of the choice targets or by applying a force field between the targets. We
show that there is a reduction in the frequency of change of mind when the separation of the choice targets would require
a larger excursion of the hand from the initial to the opposite choice. The reduction is best explained by an increase in the
evidence required for changes of mind and a reduced time period of integration after the initial decision. Thus the criteria to
revise an initial choice is sensitive to energetic costs.
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Introduction

A decision is a commitment to a proposition or plan amongst

alternatives. Many decisions benefit from deliberation and an

accumulation of evidence over time, for example, to improve the

accuracy when based on noisy or unreliable evidence [1–5]. To

deploy this strategy, the brain must also establish a rule for

terminating deliberation and committing to a choice. A class of

models, termed bounded drift-diffusion or random walk, has been

applied to a wide range of decisions to explain both the speed and

accuracy of choices made by humans and animals [1–11]. The

essential feature is an accumulation of signal plus noise until

cessation of the evidence stream or until the accumulation reaches

a bound.

This framework applies particularly well to some perceptual

decisions, which must be based on a stream of noisy, independent

samples of evidence. For example, when asked to decide the

direction of dynamic random dot motion (Fig. 1A), humans and

monkeys exhibit choice and reaction time (RT) functions that are

explained by the signal-to-noise associated with motion strength

and pair of symmetrically placed termination bounds [2,6,12]

(Fig. 2).

The drift-diffusion framework has been extended recently to

explain a curious phenomenon, termed change of mind (CoM),

which occurs when a subject indicates a decision about motion

direction by reaching towards a choice target (Fig. 1). On a

fraction of trials, the subject changes the trajectory of the reach to

indicate the other choice [3]. This occurs despite the fact that the

sensory stimulus is extinguished the moment the hand begins to

move from the starting position (Fig. 1, home). Consideration of

the sensory and motor delays leads to an understanding of these

change-of-mind trials. These delays, which are on the order or

400 ms, imply that there is a period of information at the end of

the sensory stream that cannot affect the initial choice but could

still be processed after initiation. A simple extension of the drift

diffusion model was able to explain the patterns of changes of

mind. The key idea is that having accumulated evidence to one

choice bound — thereby triggering the initial choice — a new

change-of-mind bound is generated (Fig. 2). If the total accumu-

lated information from the initial decision and the extra processing

time crosses this bound (red line) then the subject revises the

decision and reaches to the other target. Fits of the model showed

that the change of mind bound did not require as much

information as for the initial decision and also that not all the

information in the processing pipeline was used, that is there was a

limited time for which new information was processed.

There is something unsatisfying in this explanation. Consider

the optimal strategy for revising an initial decision so as to make

the final choice as accurate as possible. This would require

accumulating all the available information in the processing

pipeline (i.e., the period that includes the sensory and motor
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Figure 1. Experimental set-up. A: Schematic of the visual display (rectangle). A trial starts when the subject’s hand is in the home position. After a
random delay, the random dot kinematogram become visible and the subject views the moving dot stimulus for as long as they need (up to 2 s).
Subjects indicate the direction of dot motion by moving to the leftward or rightward choice target. As soon as the subject moves from the home
position, the motion stimulus vanished. The trial ended when the subject reached one of the two choice targets. B: Subjects held the handle of a
robotic interface and moved to either a leftward or a rightward circular target depending on the perceived motion direction of a central random-dot
display. A mirror system prevented subjects from seeing their arm. C: The time course of events that make up a trial.
doi:10.1371/journal.pone.0092681.g001

Figure 2. Schematic of a model that explains the pattern of changes of mind [3]. Information flow diagram showing visual stimulus and
events leading to a decision and a possible change of mind. The example illustrates a leftward motion stimulus that gives rise to an initial incorrect
rightward choice. The visual stimulus gives rise to a decision variable that reflects accumulated evidence (black trace) that is the integral of noisy
evidence. This governs the initial choice and decision time. The initial decision is complete when a ‘Right’ or ‘Left’ bound is crossed. There is a sensory
delay from motion onset to the beginning of the accumulation and a motor delay from the initial decision to movement initiation. These delays
together are termed non-decision time (tnd). After the initial decision, further accumulation takes place on the evidence still in the processing
pipeline; if the accumulated evidence reaches the opposite change-of-mind bound (Bcom) within a temporal deadline (tpip) then the decision is
reversed (red). Failure to reach the change-of-mind bound (e.g. black trace) leads to no change of mind. Note that due to the time delays, only the
yellow part of the visual stimulus can influence the initial choice and the blue portion can only be processed after the initial choice.
doi:10.1371/journal.pone.0092681.g002
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delays) and changing one’s mind if and only if the final

accumulated evidence had a sign opposite to that of the initial

choice. However, in our task subjects required more evidence than

this to change their mind, and they often terminated further

processing by using only a portion of the available evidence. This

is captured by a change-of-mind bound on the other side of zero

from the bound that was initially crossed and a limited period of

time which serves to terminate processing in the post-initiation

phase. One possible reason for this apparent sub-optimal behavior

is that it requires motor effort to alter the reach to the other choice

target. Moreover the amount of motor effort increases as the reach

progresses, since the two choice targets are separated in space.

Therefore, there may be a trade-off between motor effort and the

willingness to change one’s mind. To test this hypothesis we

manipulated the movement effort that would be required to

change the movement from one choice target to the other. We

examined how this manipulation affected the frequency of changes

of mind and the mechanism relating the drift-diffusion model to

motor effort.

Methods

The Cambridge Psychology Research Ethics Committee

approved the procedures in the study. Participants provided

written informed consent prior to participating in this study. Four

naı̈ve right-handed subjects (1 female, 3 male age 22–30)

participated in the study. One additional subject was excluded

during initial perceptual training, because this subject performed

close to chance.

Subjects were seated and used their right hand to hold the

handle of a vBOT manipulandum that was free to move in the

horizontal plane (Fig. 1A & B) [13]. The manipulandum allowed

the recording of position of the handle and the application of end-

point forces. Subjects were prevented from seeing their arm by a

mirror that was used to overlay virtual images of a video display

(updated at 75 Hz) onto the plane of the movement. A headrest

ensured a viewing distance of 40 cm. The hand position was

displayed as a small circle (0.5 cm radius).

The timeline of a trial is shown in Fig. 1C). A trial began when

the subject’s hand was in the home position (1 cm radius). To

ensure subjects started from a consistent starting position, when

the hand crossed the edge of the home position, a small force

guided the hand to the center. After a random delay, sampled

from a truncated exponential distribution (range, 0.7–1.0 s; mean,

0.82 s), a dynamic random-dot stimulus appeared at the center of

the screen within a circular aperture subtending 5u of visual angle.

The motion stimulus is described in detail in previous studies [14].

In each trial, the direction of motion was randomly chosen to be

leftward or rightward and had a stimulus density of 15.6 dots

deg22 s21. Dots were displayed for one video frame and then

either replaced at a random position or displaced to the left or

right three video frames (40 ms) later. This displacement would

produce a speed of 7.1u s21. Thus the positions of the dots in

frame four, say, could only be correlated with dots in frames one

and/or seven but not with dots in frames two, three, five and six.

The probability that each dot would be displaced as opposed to

randomly replaced, termed the coherence, determined the task

difficulty and was selected randomly from the set (0, 0.032, 0.064,

0.128, 0.256 and 0.512).

The subjects were instructed to judge the direction of the

moving random dots and to reach to a corresponding choice target

when ready (one on the left and one on the right; radius, 1.5 cm;

20 cm from the starting position; Fig. 1a). Critically, when the

movement was initiated—that is, the hand crossed the boundary

of the home-position—the random-dot stimulus was extinguished.

Subjects were given feedback if they did not reach the target with a

movement duration of 5006100 ms. The trial ended when the

subject reached one of the targets. Subjects were provided with

visual and auditory feedback of whether they had made the correct

choice (and on a random half of the 0 coherence trials). Subjects

were instructed to fixate at the centre of the dot aperture (a small

fixation cross was presented at the centre when the dots were not

in motion to assist this) —the targets were large enough that they

could be easily reached using peripheral vision.

Subjects performed 4 different conditions. For three of the

conditions, the targets were placed at the three angular positions of

15, 30, and 45u (angle definition shown in Fig. 1A). In a fourth

condition, the targets were set at 15u and a resistive, velocity-

dependent force-field with a strength of 0.5 N cm21 s (for Subject

2) or 0.9 N cm21 s (for all other subjects) was activated if the hand

crossed into the area between the two targets.

To require subjects to make an initial commitment to a choice

we simulated a visual and haptic wedge with its tip at the edge of

the home position. The sides of the wedge were 0.5 cm long and

the wedge angle was 75% of the target angle. If the subject hit the

wedge, the current trial was aborted. A new trial was randomly

generated and the aborted trial was scheduled to be performed

again later in the session.

A session consisted of a four blocks of 334 trials, one for each

condition. The order of the blocks (i.e. conditions) was randomized

for each session. Each block included roughly an equal number of

trials at each dot coherence level. The same random dot stimuli

were repeated across the four conditions in a random order but

new random stimuli were created for each session. There was a

rest break in the middle of, and between, each block. Three

subjects (1, 3, 4) completed six sessions for a total of 2004 trials in

each of the four conditions. Subject 2 completed 2338 trials in

each condition. Subject 2 was the first subject to experience the

force-field condition. After initial analysis, the field strength was

increased in order make the condition more effortful for the other

subjects.

Prior to performing the main experiment the subjects were

extensively trained (17–20 sessions with approximately 1000 trials

per session) over a number of weeks to ensure they had stable

performance in the components of the task. In general, it takes

extensive practice for subjects to achieve a stable speed-accuracy

regime. For this study we needed to compare the initial choices

and reaction times across the effort conditions. We therefore chose

to introduce those manipulations only after subjects had extensive

practice. The training proceeded in several stages. First, subjects

were trained to discriminate motion direction without a reaching

movement. Fixed-duration (500 ms) stimuli were used to train

subjects to discriminate dot motion direction and respond with a

button press. Subjects’ performance was assessed by logistic

regression of probability of a rightward choice versus coherence

extracting the sensitivity (slope) and bias. When both parameters

were stable (5–8 sessions), subjects progressed to the next stage.

Subjects then performed reaction-time training and were instruct-

ed to respond with a button press as soon as they reached a

decision about the direction of dot motion. Subjects were assessed

by their mean reaction times at the various coherence levels. When

mean reaction times and accuracy remained stable (4–6 sessions),

subjects progressed to the next stage. Next, subjects learned to

make reaching movements of the appropriate duration without

random dot stimuli. The subject initiated a trial by holding the

cursor in the home position, and after a random delay, one of two

choice targets turned green. If the subject moved to the target

faster than 400 ms or slower than 600 ms, they received the error

Motor Effort and Changes of Mind
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message, ‘‘Move slower’’ or ‘‘Move faster,’’ respectively. The three

targets configurations were used as in the final experiment.

Subjects progressed to the next stage if they performed fewer than

5 trials outside of the range of 400–600 ms in the last 30 trials. All

subjects met these criteria after a single session and progressed to

the main experiment. In the main experiment subjects performed

reaction-time trials in which choice reach targets were visible from

the onset of the trial.

Data Analysis
We recorded the hand trajectories at 1,000 Hz. For each trial,

we recorded the choice target and reaction time (RT; time to

movement initiation from start of motion stimulus). In addition,

we developed a measure, based on the hand trajectories, of

whether subjects had changed their decision during the move-

ment. Normally, hand movements for easy trials (high coherence)

were straight to the target (Fig. 3A). A change of mind was

reflected in a trajectory that passed the wedge on one side but

ended at the choice target on the other side.

In addition to the model based analysis described below we

pursued several model-free analyses. To test whether subjects’

sensitivity to motion (for their initial choices) varied by condition,

for each subject we compared each condition to the 15u condition

by fitting a logistic model:

Pright~(1zeb0z ){1

where C is the signed coherence, I is an indicator variable (0 for

the 15u condition and 1 for the other test condition) and bi are

fitted coefficients. We evaluated the null hypothesis {Ho: b3 = 0}

for 12 comparisons (4 subjects, 3 conditions) against a conservative

level p = 0.01.

We performed a similar analysis to test whether changes of

mind altered performance. To do this we examined whether the

slope of the psychometric curve linking choice with signed

coherence changed between initial and final decisions across the

4 conditions. We fit the equation above across all 4 conditions but

now with the indicator variable, I, being zero for trials without a

change of mind and 1 for trials with a change of mind. To test for

a change in sensitivity (accuracy) with changes of mind, we

evaluated the null hypothesis {Ho: b3 = 0}.

To examine whether reaction times varied across conditions, for

each subject we compared the mean reaction time for each signed

coherence in the 15u condition with the mean reaction times for

each of the other three conditions (12 two-way ANOVAs with a

conservative level p = 0.01).

To test whether changes of mind decreased with increasing

effort we performed logistic regression of the probability of change

of mind as a function of angular separation a for the three non-

force field conditions:

PCoM~(1zeb1S1zb2S2zb3S3zb4S4zb5a){1

where all subjects were constrained to share the same linear effect

of angle but could have different intercepts as determined by the

indicator variable Si which was 1 for subject i and zero otherwise.

We evaluated the null hypothesis {Ho: b5 = 0}. In addition we fit a

fully saturated model, allowing for different effects of a for each

subject. We performed a similar analysis to examine if the

frequency of change of mind varied between the 15u and the 15u
with force field conditions.

Modeling
We first used the drift-diffusion model [15] to explain the

proportion of initial choices and reaction times and then fit

change-of-mind behavior using methods similar to [3].

For the initial choices, the model posits that evidence

accumulates from a starting point, y0, until it reaches an upper

or lower bound (6B), which determines the initial choice and

decision time. The increments of evidence are idealized as

Normally distributed random variables with unit variance per

second and mean m= kC+m0, where C is signed motion strength

(specified as the proportion of dots moving in net motion direction,

positive = rightward and negative = leftward motion); k, B, y0 and

m0 are free parameters. The parameters B and k explain the

tradeoff between speed and accuracy of the initial choices; m0 and

y0 are drift and starting point offsets, which explain bias (if any) for

one of the choices. The reaction time incorporates additional

latencies from stimulus onset to the beginning of the bounded

accumulation process and from the termination of the process to

the beginning of the motor response. The sum of these latencies,

termed non-decision time, is modeled as a Normally distributed

Figure 3. A: Sample hand trajectories from Subject 2 for the four conditions (3 different angular target separations and force field FF). Most
trajectories extend directly from the home position (bottom circle) to one of the choice targets. B: In a fraction of trials, the trajectories change course
during the movement, indicating a change of mind. Panel B shows all the change of mind trials for this subject and in panel A and equal number of
non change-of-mind trials have been randomly selected. Note the visual/haptic wedge just above the home position which subjects were not
allowed to contact.
doi:10.1371/journal.pone.0092681.g003
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variable with mean tnd and standard deviation stnd, truncated and

renormalized so as to take on only positive values

Data were fit by maximizing the log likelihood of the responses

(that is the probability of the initial choice at the reaction time,

given the stimulus direction, coherence and model parameters).

To achieve this for each trial we computed the probability of

hitting the choice bound corresponding to the subject’ choices for

the possible decision times [6]. To calculate the likelihood of this

choice at the particular reaction time observed on the trial we

convolved this decision time distribution with the distribution of

nondecision times (with mean tnd and standard deviation stnd).

This procedure calculates the summed probability of all possible

combinations of possible nondecision times and decision times that

would give the reaction time seen on that trial. This procedure was

performed for each trial to calculate the log likelihood across the

trials and we chose model parameter to maximize the log

likelihood.

As there were minimal differences in the initial choice across

conditions within a subject, we fit each subject’s data using a

model in which the 6 parameters were shared across the 4

conditions (k, B, y0, m0, tnd, stnd). We performed multiple

optimizations from over 50 different starting points to maximize

the chances of the global optimum. We then performed bootstrap

analysis (over 500 samples) to estimate the confidence limits on the

fitted parameters.

Modeling change-of-mind. Because the stimulus duration

in each trial equals the reaction time, there is additional evidence

from the stimulus that is potentially available for processing after

the brain has committed to an initial choice. We used a simple

model (Fig. 2) that incorporates this additional information as

follows. When the initial decision ends, the accumulation

continues until either a second, post-initiation change-of-mind

bound is crossed (offset by Bcom from the zero evidence in the

opposite direction to the initial choice bound), in which case the

decision is reversed, or a temporal deadline is exceeded (tpip) in

which case the initial decision is reaffirmed.

The values of k and m0 derived from the first model for initial

choice were used with the drift equation to predict for each trial if

a change of mind occurred and whether it produced a correct or

incorrect final choice. The maximum-likelihood method used to

determine the initial choice parameters was also used to estimate

values of Bcom and tpip for a condition.

To examine the changes in Bcom and tpip, 95% confidence ellipses

for Bcom and tpip were calculated from the data using the profile

likelihood method (Appendix A in [16]). That is, the 1-a
confidence ellipse encloses all values of Bcom and tpip for which

the log likelihood is within x2
1{a(n)=2 of the maximum log

likelihood, where n is the number of parameters (2) being

estimated via the method of maximum likelihood.

Results

Four naive subjects were trained to decide the direction of

motion in a dynamic random dot display and to indicate their

decisions by moving a robotic handle to a left or right choice target

(Fig. 1A). They controlled the viewing duration, effectively

terminating the display by moving the handle outside the 0.5 cm

radius home position. Since the initial movement was required to

pass to the left or right of a virtual wedge, it was straightforward to

classify the initial decisions as left or right. Whereas most

trajectories continued to the corresponding choice target

(Fig. 3A), a minority switched direction to the opposite choice

target (Fig. 3B). These trials were designated change of mind trials

(CoM).

Stronger motion induced faster reaction times (Fig. 4A) and

more accurate choices (Fig. 4B), and as previously shown, both the

accuracy of these initial choices and the reaction times were

explained by a bounded evidence accumulation model (Fig. 4A &

B, solid curves) [1–3]. Although the random dot motion

disappeared at the moment of movement initiation, there were

occasional changes of mind (Figure 4C solid circles show

proportion of trials with a change of mind). Changes of mind

tended to be most common at the low motion strengths, where

initial errors were more frequent. Moreover, changes of mind were

not random, but tended to improve accuracy (Fig. 4C open circles

show proportion improvement due to change of mind).

These change-of-mind events can be explained by the

additional processing on the stream of evidence that did not have

time to influence the mechanism which mediated the initial

choice. They are interesting because they expose a level of

sophistication to the decision process that trades speed versus

accuracy. The phenomenon suggests that the brain might control

the speed-accuracy tradeoff differently when changes of mind are

Figure 4. Psychometrics of choice for all subjects for the 306
condition. A: Reaction time as a function of motion coherence
(specified as the proportion of dots moving in the same direction).
Open circles are mean reaction times and solid lines are fits of the data
to the drift-diffusion model. B: Proportion of correct trials as a function
of motion coherence. The solid lines are the fits of the data. C:
Proportion of trials with changes of mind as a function of motion
coherence. Solid circles are for all changes of mind and open circles are
the proportion of trials on which a change of mind improved
performance (that is the difference in the number of changes of mind
that correct an error and the number that induce an error). The solid
and dotted lines are the fits of the extension of the drift-diffusion model
for changes of mind to the data. Error bars show 6one standard error
and are derived from the binomial distribution for the proportions.
doi:10.1371/journal.pone.0092681.g004
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possible and not too costly. To test this, we introduced variations

in the cost of CoM. We did this by changing the angular

separation between choice target positions or by introducing a

force field to impede crossing over from an initial left or right

choice to the opposite target. We first show that these manipu-

lations affected the frequency of change of mind and then attempt

to determine whether these manipulations affect the processes

underlying the initial decision, the revision after initiation, or both.

Figure 5A tallies the proportion of CoM trials associated with

each of the testing conditions. For three of the four participants,

CoM were least common when the choice targets were separated

by 45u To examine whether there was a reduction in changes of

mind with effort we analyzed the three non force-field conditions

in which we could order the effort from least (15u) to most effort

(45u). We performed a logistic regression of the probability of

change of mind across all 4 subjects allowing subject-dependent

intercepts but requiring all subjects to share a common

dependency on the angular target separation (see Methods for

details). This showed that across the subjects there was a significant

(p,0.0001) reduction in changes of mind with angular separation.

Examining each subject individually showed that Subjects 1-3

each showed a significant reduction in changes of mind with

angular separation. (P,0.001 for subjects 1 & 2, p = 0.02 for

subject 3; subject 4 n.s.). We performed a similar analysis to

examine whether the number of changes of mind varied between

the 15u and the 15u with force field conditions—the results showed

that there was no significant change in frequency.

For all subjects and conditions (bar 1), CoM led to an

improvement in accuracy (Fig. 5B). The one exception is S1

whose rare CoM were consistent with chance performance in the

45u condition. We examined whether changes of mind improved

the performance as reflected in the slope of the psychometric

function for each subject (across the 4 conditions - see Methods).

Changes of mind reliably improved accuracy for three of the

subjects (Subjects 1, 3 & 4; p = 0.04, p,0.001, p,0.001

respectively; Subject 2 p = 0.08) by improving sensitivity to

motion.

In broad terms, there are two ways that energetic costs of CoM

could affect the decision process. The first is to induce a more

conservative strategy behind the initial choice. For example,

participants might have adopted a higher initial bound, leading to

slower but more accurate initial choices or they might have

increased attention to improve the accuracy of initial choices.

Figure 6 shows the initial choice functions for all the conditions for

the four subjects, fit with logistic regression. The graphs are

displayed to facilitate comparison with the 15u condition (red

curve). An increase in sensitivity would be apparent as a steeper

slope of the psychometric function, and this was seen in just one

case (Subject 1, 30u condition; p,0.001, uncorrected, see Methods

for details). Note that in the drift-diffusion model, accuracy (hence

sensitivity) is governed by the product of the bound height and the

signal to noise (i.e., the k term that sets the drift term in the

diffusion model). We also failed to observe systematic changes in

the RT for the initial choice. In only two cases (Subject 1, 45u
condition, and Subject 4, 15FF condition) did we observe evidence

of slowed initial choices in the face of higher energy costs for CoM

(ANOVA, main effect of condition, p,0.01), although the slowing

was marginal (mean reaction time differences of 34 and 36 ms

respectively). This implies that the bound height (B term in the

drift diffusion model) was stable. We conclude from these analyses

that the cost manipulations we imposed failed to affect the strategy

subjects employed to make their initial decisions. As mentioned

below, we do not believe this conclusion would hold generally, but

it greatly simplifies the next analyses.

The second way for energetic costs to affect the frequency of

CoM is to alter the processing of motion information in the post-

initiation period. The simplest explanation of CoM is that the

initial choice ignores a portion of the stream of evidence because

commitment —which is informed by stimulus evidence a visual

latency ago— occurs before the movement, which in turn

terminates the display. The total non-decision time amounts to

,400 ms worth of information, which can be used to revise the

initial choice. A variety of potential mechanisms could exploit this

additional information, but the simplest is continued accumulation

of evidence after from the initiation bound to a new ‘‘change of

Figure 5. Changes of minds. A. Proportion of trials with a change of mind as a function of the condition for each subject. B: Proportion
improvement on change of mind trials - that is the ratio of change of mind trials that correct an error to the total number of change of mind trials.
Values exceeding one half (red bar) are consistent with an overall tendency to correct an initial error. Error bars are s.e.
doi:10.1371/journal.pone.0092681.g005
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mind’’ bound (Bcom Fig 2). The initial choice is reaffirmed if the

accumulated evidence does not reach this CoM bound before the

stream of evidence runs out or before an even earlier deadline (tpip).

This is the model that generated the fits in Figure 4c (see also [3]).

We next examined whether Bcom and tpip change with the four

effort conditions. For each subject, we adopted the parameters

used to explain the initial choices (Table 1) and attempted to

explain the fraction of CoM trials at each motion strength with the

two degrees of freedom (Bcom and tpip). Figure 7 shows represen-

tative fits to the data from one subject. The fits clearly capture the

frequency and pattern of CoM as a function of motion strength,

and they approximate the breakdown of CoM by the correction of

initially erroneous choices or spoiler of initially correct choices.

Figure 8 summarizes the fits for all four subjects for all

conditions by illustrating the 95% confidence regions for Bcom and

tpip for each condition (colored regions). It is important to note that

the same total number of CoM can be achieved by combinations

of these parameters (contours, Fig. 8). For example, as post

initiation time increases, it may be compensated by an increase in

the distance to the CoM bound (Bcom). Thus, the confidence

regions for the parameters tend to follow these iso-CoM contours.

Importantly, we are able to fit Bcom and tpip uniquely (solid small

circles Fig 8), because values that support the same total frequency

of change of mind produce different patterns of changes of mind

across the coherence levels. For 3 of the 4 subjects, the 45u
condition stands out as distinct from the other conditions,

consistent with the reduced frequency of CoM under this

condition (Fig. 5a). That is, subjects required less evidence to

change their mind in this condition (smaller Bcom) but integrate the

information for a shorter time (reduced tpip) with this combination

leading to a reduction in CoM. Interestingly, Subject 4, who did

not change his frequency of CoM in a systematic way, appears to

have changed strategy (that is their Bcom and tpip) to achieve this

very consistency. Also as expected, for 3 of the 4 subjects, the fitted

tpip is shorter than the fitted non-decison time (sum of sensory and

motor delays) from the initial choices (437–483 ms) suggesting

these subjects do not use all the information available in the post-

initiation period. In contrast, Subject 1 has conditions (15u and

15FF) in which it appears he uses the entire information available

(values of tpip much larger than the fitted non-decision time for this

subject are probably spurious as reflected by the large confidence

region which encompass reasonable values of tpip). Thus, for all

subjects, we adduce that effort cost affected the post-initiation

processing.

Discussion

The random dot motion task is exemplary of a variety of

decisions that benefit from an accumulation of evidence in time. It

is well known that the criterion for terminating a decision

instantiates the tradeoff between speed and accuracy [7,8,17].

When there is a steady stream of evidence, termination implies

that the decision-maker must ignore a portion of the evidence

stream when making her decision. This is because of the latency

for new information to be incorporated into a decision variable

and the latency from decision termination to the cessation of the

evidence stream, which is at movement initiation in our

experiment. The sum of these latencies, termed the non-decision

Figure 6. Initial choice function. Graphs show the probability of a rightward choice as a function of motion strength (sign of coherence reflects
dot motion direction: left or right) for each subject and condition. Curves are logistic fits. For comparison the red curve for each subject is the logistic
fit to their 15u condition. Error bars are s.e.
doi:10.1371/journal.pone.0092681.g006
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time (tnd), was ,400 ms in our experiments, consistent with

previous studies in humans and monkeys [3,7]. This value accords

with neural recordings from the parietal cortex of the monkey,

which exhibit an approximately 200 ms latency to the start of

evidence accumulation [12] and latency from the signature of

decision termination to the initiation of the behavioral response

(,70 ms for saccades [14,18] and ,170 ms for reaches [19]).

Recently, it was shown that this ,300–400 ms of ignored evidence

is not lost entirely, but can be exploited to revise an initial choice

[3]. Such changes of mind tend to improve accuracy because they

are more likely to correct an initially erroneous choice than they

are to spoil an initially correct choice. The present study shows

that post-initiation processing is affected by the effort associated

with a change of mind.

Subjects indicated their decisions by moving their hand from a

central position to one of two choice targets. We designed the

experiment to ensure that both the initial choice and a change of

mind could be unambiguously discerned from the hand trajecto-

ries (Fig. 3). We manipulated the cost of CoM by controlling the

angular separation of the choice targets or by introducing a viscous

force field (FF) in the direction that would counter a CoM. Three

of the four subjects reduced the frequency of change of mind trials

when the angular separation between targets was greater, and all

four changed their strategy when processing information after

initiating the response. The absence of influence of FF might speak

to the complexity of the effort cost (e.g., factors beyond force

alone, such as trajectory, speed), but it might simply reflect the

limited strength of the viscous field we employed.

Although energetic costs reduced the frequency of CoM by up

to 90%, the overall effect was small, because subjects only changed

their minds on 1–5% of trials on the least costly condition. We

observed a greater number of CoM in an earlier study, likely

because these subjects adopted a different speed accuracy tradeoff.

In the present study, we specifically avoided encouraging subjects

Figure 7. Pattern of changes of mind for Subject 2. Probability of a change of mind as a function of (unsigned) motion coherence for the four
conditions. Green circles are all change of mind trials, red are initial errors that were corrected and blue are trials that spoiled an initially correct
choice. Solid curves are model fits to the data for the change of mind model. Error bars are s.e.
doi:10.1371/journal.pone.0092681.g007

Table 1. Fitted parameters of the accumulation-to-bound model to the initial decisions.

Subject 1 Subject 2 Subject 3 Subject 4

k 11.11 (10.42:11.88) 21.93 (20.63:23.14) 19.61 (18.61:20.73) 19.55 (17.91:21.39)

B 0.659 (0.650:0.666) 0.827 (0.817:0.836) 0.465 (0.458:0.472) 0.467 (0.458:0.476)

tnd 0.417 (0.414:0.421) 0.481 (0.475:0.487) 0.437 (0.433:0.441) 0.483 (0.477:0.489)

stnd 0.023 (0.020:0.026) 0.061 (0.054:0.067) 0.038 (0.035:0.042) 0.059 (0.054:0.063)

m0 0.030 (0.025:0.035) 0.024 (0.022:0.027) 0.018 (0.013:0.023) 0.014 (0.008:0.019)

y0 0.097 (0.081:0.112) 20.083 (20.101:20.065) 0.055 (0.031:0.076) 20.034 (20.062:20.007)

The six parameters for initiation are shown; parentheses show the 95% confidence intervals obtained by bootstrapping.
doi:10.1371/journal.pone.0092681.t001
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to adopt a faster and less accurate speed accuracy tradeoff at

baseline, because we worried that it could give rise to fewer CoM

under an energy cost simply by relaxing this regime to produce

slower and more accurate initial choices. Although the price of our

experimental strategy is fewer CoM, overall, the dividend is a clear

interpretation. Energetic costs did not appear to affect the

mechanism underlying the initial decision but instead altered

processing of information after commitment to the initial choice,

in the post-initiation period. By the same logic, there is no reason

to believe that under different conditions, subjects would not

adjust their initial decision strategy to compensate for post-

initiation costs. For example, under speed stress, which tends to

produce more CoM, we would expect energetic costs to slow initial

choices. It remains to be seen if such a manipulation would have

exposed an effect of the force field manipulation.

The small number of CoM in our study precludes a systematic

comparison of alternative models to the one we applied. For

example, in the brain there are at least two decision variables

represented by populations of neurons that support the right and

left choice, respectively. Hence, diffusion between two bounds is

replaced with a race between two diffusion mechanisms [2,6]. This

implies that processing in the post-initiation period may not begin

at the termination bound for the initial choice, but at a more

intermediate value achieved by the losing mechanism. This idea

invites further generalization once one entertains that possibility of

multiple decision-making mechanisms operating in parallel.

Even in the restricted model framework we pursued, we cannot

discern whether the reduction in change of mind was due to a

change in their deadlines, the use of a more conservative bound for

change of mind, or both. As shown by the contour lines in Figure 8,

these two strategies can be traded against each other to achieve the

same frequency of CoM. However, it is intriguing that the one

subject who maintained a consistent CoM frequency in all

conditions, did appear to change strategy to do so.

Decisions about actions naturally incorporate energetic costs.

Minimizing these costs provides a rich framework for choosing

among possible trajectories and online control of movement

[20,21]. Similarly, the potential values and costs associated with

commitment to different propositions, depending perhaps on

whether the decision was correct or not, may lead a rational

decision-maker to bias her choices. This arises in medicine and

finance, and it is captured in standard signal detection theory by a

shift in decision criterion (e.g., accepting a high rate of false

positive mammograms to avoid missing the rare cancer). From this

perspective, it would not be at all surprising if differences in the

energetic costs associated with communicating a decision were to

introduce a choice bias. However, we chose to study a more subtle

manipulation to see if energetic costs could impact a decision

process without making either choice more desirable.

Since the advent of decision theory, and especially signal

detection theory, it is common wisdom that decision criteria

incorporate the value (or cost) of errors. The extension to

sequential analysis incorporates deliberation time into the cost

Figure 8. Parameter fits to the change of mind model for each subject. The change of mind model fits the change of mind bound Bcom and
the time allowed for post-initiation processing tpip. For each condition, the maximum likelihood estimates (small solid circles) are shown, as well as
the 95% confidence region for the parameter estimate (shaded region). The proportion of change-of-mind isocontour lines are shown for the
proportion of change of mind trials in the 15u target separation condition (solid line) as well as for proportion of change of mind trials that are 33, 67
and 133% that of the 15u separation condition.
doi:10.1371/journal.pone.0092681.g008
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function [22], thereby inviting us to view the decision criterion as a

policy on the tradeoff between speed and accuracy [11]. The

present study extends this way of thinking into the post-initiation

period, where energetic costs affect the criteria to revise an initial

choice. Based on what we know of the underlying neurobiology, it

is easy to accept that energetic costs associated with reporting a

decision could affect the decision process. In monkeys, the decision

variable is represented in structures that are associated with

planning the motor response [14,23] and the motor system of both

human and nonhuman primates are affected by partial informa-

tion leading to a decision [15,19,24–27]. In our study, the effect of

effort was restricted to the epoch of processing after the initial

decision. We predict that this will extend to the entire deliberation

as this would be necessary to accommodate asymmetric energetic

costs for left vs. right, but this remains to be seen.
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