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Abstract

The separation of distinct motor memories by contextual cues is a well known and well stud-

ied phenomenon of feedforward human motor control. However, there is no clear evidence

of such context-induced separation in feedback control. Here we test both experimentally

and computationally if context-dependent switching of feedback controllers is possible in the

human motor system. Specifically, we probe visuomotor feedback responses of our human

participants in two different tasks—stop and hit—and under two different schedules. The

first, blocked schedule, is used to measure the behaviour of stop and hit controllers in isola-

tion, showing that it can only be described by two independent controllers with two different

sets of control gains. The second, mixed schedule, is then used to compare how such

behaviour evolves when participants regularly switch from one task to the other. Our results

support our hypothesis that there is contextual switching of feedback controllers, further

extending the accumulating evidence of shared features between feedforward and feedback

control.

Author summary

Extensive evidence has demonstrated that humans can learn distinct motor memories (i.e.

independent feedforward controllers) using contextual cues. However, there is little evi-

dence that such contextual cues produce similar separation of feedback controllers. As

accumulating evidence highlights the connection between feedforward and feedback con-

trol, we propose that context may be used to separate feedback controllers as well. It has

not been trivial to test experimentally whether a change in context also modulates the

feedback control, as the controller output is affected by other non-contextual factors such

as movement kinematics, time-to-target or the properties of the perturbation used to

probe the control. Here we present a computational approach based on normative

modelling where we separate the effects of the context from other non-contextual effects

on the visuomotor feedback system. We then show experimentally that task context
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independently modulates the feedback control in a particular manner that can be reliably

predicted using optimal feedback control.

Introduction

Whether it is touching a hot surface, returning a tennis serve or simply lifting an object, the

human body utilises a variety of sensory inputs to produce movements of any complexity.

Indeed, different feedback modalities of human motor control, such as stretch reflex [1–3],

vestibulo-ocular reflex [4, 5], visuomotor [6–14], or even auditory feedback [15, 16] have

extensively been studied in prior literature. However, most studies have investigated feedback

control in paradigms of either a single task [17–21], or multiple tasks presented in their own

dedicated blocks [22–26]. While such designs provide key insights into the behaviour of the

feedback controller in isolation, they are not entirely reflective of human behaviour in real-life

situations. For example, a realistic sequence of events could require a volleyball player to first

pick up the ball from the ground by reaching for it with their hand and stopping on contact,

only then to hit the same ball with the same hand a few moments later while serving. While

studying both components independently has received focus in the field of motor control, any

interactions between the feedback controllers in the context of rapid switching have not been

broadly studied.

While feedback control in human movement is critical in correcting for random errors

within movements, feedforward control corrects for movement errors that are predictable. In

order to systematically predict and compensate for specific errors upcoming in a given move-

ment, the mechanism of contextual switching via contextual cues is broadly accepted. It is now

well understood that performing two opposing tasks in an alternating manner will lead to

interference [27–29], resulting in behaviour that is averaged between the two tasks, failing to

deal with either task. However, if the two tasks are performed in sufficiently different contexts,

such as separate physical or visual workspaces [30–32], or different lead-in [33, 34] or follow-

through movements [35, 36], this interference can be reduced, allowing the formation of two

separate motor memories. Hence, it is reasonable to expect, that a similar contextual regulation

could be present in feedback controllers. Therefore, in this study we test whether the feedback

control policies exhibit such modulation when humans are presented with different tasks in an

alternating manner.

One difference between studying contextual switching in feedforward and feedback control

is that it is difficult to evaluate whether the feedback control policy has changed after the inter-

vention. Specifically, it has been shown computationally that the optimal feedback controller

(OFC) with fixed parameters can produce variable responses when correcting for perturba-

tions within the movement, for example, when the comparable perturbations are induced in

different parts (e.g. early or late) of otherwise identical movements [26, 37–39]. Furthermore,

such behaviour was also observed in experimental studies [7, 20, 26, 39–41]. Hence, merely

observing a difference in the feedback response is not enough to conclude a change in the con-

trol policy. However, recently we demonstrated that as long as two perturbations of the same

magnitude are induced at the same time-to-target (which is defined as a difference between

the perturbation onset and movement end), the same feedback control policy produces the

same magnitude response, independent of whether the two perturbations occurred at the

same location, time from the beginning of the movement, or the movement velocity [26].

Thus, we can utilise this relationship between the magnitude (or intensity) of the feedback
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response to a perturbation at the same time-to-target to quantify whether the difference in the

response is due to the change in the control policy or not.

There are several studies that have already looked into contextual regulation in feedback

control tasks. Most of such studies, to our knowledge, approached this question by modulating

the structure of a target (wide vs. narrow, long vs short, etc.) [42–45], or by including obstacles

along the reaching path [42, 45]. Results of these studies are consistent with optimal control-

like behaviour with separate controllers for different tasks, even when the target structure is

changed on random trials [42, 44, 45], however one study suggests that control when the target

is unpredictable may be sub-optimal [43]. In this study we test whether such rapid switching

also holds true for tasks, where target structure remains unchanged, but the tasks themselves

require a change of movement properties. Specifically, we test how the feedback control poli-

cies are affected when our participants are presented with a “multitasking” scenario where

they have to switch between performing two distinct tasks, i.e. reaching to and stopping at the

target, or hitting through the target and stopping behind it. While the two tasks are fundamen-

tally different, and in isolation should require different feedback control policies, here we also

test whether the same relationship holds true in the mixed schedule (as it would for contextual

switching in feedforward control), or if the interference between two control policies results in

a single policy, averaged or weighted between the two independent controllers.

Results

In this study we tested the behaviour of the human feedback controller when switching

between two different tasks. Specifically, we presented our human participants with two tasks

requiring different control policies—a stop task, where participants had to reach and stop at

the target, and a hitting task, where participants had to punch through the target and stop

behind it. In our previous work we demonstrated computationally that these two different

types of movements trigger feedback responses of different magnitudes, even if the perturba-

tions occur at the same position, time, or time-to-target [26]. However, if the two movements

share the same goal (for example the goal of stopping at the same target), then these feedback

responses match in magnitude if the time-to-target matches in both movements, irrespective

of other movement parameters like peak velocity, movement distance, distance to the target

or current velocity. Therefore, such a relation between time-to-target and feedback response

intensity could be used to characterise the feedback control policy.

We use the relationship between the time-to-target and the feedback response intensity

(which serves as a proxy for feedback controller gain) as a means to analyse the controller

behaviour when the task changes. Specifically, we propose two alternatives for the architecture

of such control: a single universal feedback controller that exhibits adaptation to a given task

(Fig 1A), or multiple task-specific controllers, gated by task context (Fig 1B). When presented

with a single task in a blocked schedule (e.g. blocked stop or blocked hit), both the universal

controller and task specific controllers are expected to behave similarly, as the universal con-

troller should easily adapt its gains appropriately for the required task. However, if multiple

tasks are presented in a mixed schedule (i.e. task can randomly switch from trial to trial), the

different control architectures predict different responses. Particularly, a single universal con-

troller would aim to adapt to each presented task, thus on average producing responses some-

where in between the two given tasks within the mixed schedule (Fig 1C). In contrast, a set of

task-specific controllers would produce similar responses in the mixed schedule as they would

in a blocked schedule, as for every trial an appropriate controller is selected from a set of con-

trollers, rather than being adapted for the task (Fig 1D).
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In order to probe the control policies of human participants within these different tasks, we

occasionally perturbed participants during the movement by visually shifting the target per-

pendicular to movement direction and inducing a reactive visuomotor feedback response (Fig

2A). Recently it has become common practice to maintain these perturbations until the end of

the movement, such that an active correction is required to successfully complete the trial [19,

26, 41, 46–51]. However, we have noticed in our previous work that such maintained perturba-

tions significantly impact the overall time-to-target, which in turn affects the visuomotor feed-

back gains [26]. Thus, to keep the measurements of visuomotor feedback responses consistent

within time-to-target, in this study we only perturbed our participants laterally in channel tri-

als [7, 40, 52] and maintained these perturbations for 250 ms before switching them off, mak-

ing any corrections redundant. As a result, even when producing the feedback response,

participants’ hands are constrained along the path of forward movement, resulting in match-

ing movement durations independent of different perturbation onsets.

Participants produced involuntary feedback responses to the target jumps. These responses,

observed as a lateral force exerted by the participants on the handle of the robotic manipulan-

dum, were modulated by the different perturbation onsets (Fig 2B and 2C). From these force

responses we computed feedback intensities, by averaging individual responses over a time

window 180 ms–230 ms relative to the perturbation onset on each individual trial. This time

Fig 1. Theoretical predictions of two different architectures for feedback regulation. A. Universal feedback controller. A single

feedback controller is used to produce both stop and hit movements, and is adapted to the given task over multiple trials. Such

adaptive behaviour is reminiscent of the behaviour of the feedforward controller when learning two opposing force-fields without

separable context. Cn indicates a feedback controller at trial n B. A feedback controller as a set of task-specific controllers. A task-

specific controller (stop or hit) is selected based on the task-related context and is used during the given movement. Such contextual

switching behaviour is reminiscent of the behaviour of the feedforward controller when learning two opposing force fields with

separable context. C. Expected regulation of feedback responses by the universal feedback controller. When exposed to a single task

for a long time (blocked schedule) the controller adapts to the given task, producing optimal responses for both stop and hit

conditions. However, due to interference within the mixed schedule, such a controller would settle to the average (or weighted

average) gains between the two blocked conditions. D. Expected regulation of feedback responses by a set of task specific controllers.

Within the blocked schedule, similar regulation is expected between hit and stop as in the case of the universal controller (C).

However, in the mixed schedule, due to the task-related context, an appropriate controller is recalled on a trial-to-trial basis,

producing similar regulation as within the blocked schedule.

https://doi.org/10.1371/journal.pcbi.1010192.g001
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window has now been used in numerous studies to quantify such responses and is associated

with the involuntary, early visuomotor responses [7, 25, 40, 50, 51].

OFC model predicts differences between hit and stop conditions

We utilised the mixed-horizon OFC [38] model, presented in our earlier work, to generate

predictions of feedback control policies in our current study. Due to the experimental design

of this study not requiring an extension in movement times after perturbations, the predictions

of the mixed-horizon model also matched the predictions of our earlier time-to-target OFC

model [26]. In order to compare differences in control throughout hit and stop movements,

we first simulated two movement conditions: a 25 cm long movement with 60 cm/s peak

velocity and velocity at the target distance <1 cm/s (stop condition), and a similar movement,

but with velocity at the target >20 cm/s (hit condition) (Fig 3A). Both models were imple-

mented using a linear quadratic regulator (LQR), and were identical, apart from the difference

in state-dependent costs of terminal velocity and terminal force. Here we reduced these cost

parameters for the hit model by a factor of 50 in order to reduce the incentive to stop at the tar-

get, and thus successfully simulate hit-like movements. In addition, we also simulated a third

condition, that we term the long-stop condition, where we used the same position, velocity,

force and mean activation costs as in the stop model, but applied for reaching movements of

28 cm. The concept of the long-stop model is to compare the actual hit behaviour, executed

through a different controller, with “cheating” behaviour where the same stop movement is

performed to an imaginary target, located beyond the actual target, resulting in non-zero

velocity at the actual target, and thus appearing as a hit movement. For all three conditions we

then induced virtual target perturbations by shifting a target laterally by 2 cm at every time

step from movement onset to movement end. With these simulations we obtained one contin-

uous feedback response profile per condition, showing a dependency of feedback response

intensity on time-to-target (Fig 3B and 3C). This feedback response profile is characteristic of

the particular movement control policy associated with the movement goal, as it is maintained

even if the kinematics of the movement change (Figure 8 in [26]).

Fig 2. Experimental perturbations and responses. A. Perturbations in stop (left) and hit (right) conditions. Participants performed a forward

reaching movement towards a target, positioned 25.0 cm in front of the start position. When the hand crossed one of five evenly spaced

locations (dashed lines), a perturbation could be induced by shifting the target by 2 cm laterally for 250 ms and then returned back to the

original position. Participants were instructed to either stop at the blue target (stop condition), or hit the red target and stop within the blue

rectangle (hit condition). B. Net unscaled feedback responses to the target perturbations in the stop condition, measured via the force channel.

Participants produced corrective responses to the target perturbations that varied by different perturbation onsets. Different traces represent

different perturbation onsets, with darker colours indicating earlier perturbations. Shaded areas represent one standard error of the mean

(SEM). The grey rectangle represents the time window of 180–230 ms, where the visuomotor feedback intensities are measured. C. Net unscaled

feedback responses to the target perturbations in the hit condition.

https://doi.org/10.1371/journal.pcbi.1010192.g002
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Fig 3. Comparison of OFC model predictions and experimental results. A. Simulated kinematics of stop, hit and long-stop conditions. Stop and hit

conditions produce matching kinematics that only deviate shortly before movement end. The long-stop condition is a control simulation, that matched

the kinematics of the hit condition for the duration of the hit movement, but was achieved with the same stop controller. B. Simulated feedback

intensities as a function of time-to-target and C. time-to-movement-end. Simulations predict a faster increase of response intensities for hit condition

than for stop condition. As the long-stop condition is simulated via a longer (28 cm) movement, the time-to-target represents a time until the simulated

movement crosses a point of 25 cm distance (the target distance). For hit and stop conditions, time-to-target and time-to-movement-end are identical.

When expressed against time-to-movement-end, long-stop produces matching responses to the stop condition, as the feedback controller used for these

movements is identical. With respect to the time-to-target, long-stop responses are time-shifted from the stop responses. D. Simulated feedback

intensities as a function of the position. Stop and hit simulations with these particular kinematics produce matching feedback intensity profiles when

expressed against position, even if the feedback controllers are different. In contrast, the long-stop simulation with a feedback controller matching that

of the stop condition still produces different intensity profile against position. Shaded areas in simulated traces represent 95% confidence intervals for

simulated results. E. Velocity profiles of participants in blocked stop and blocked hit conditions. The profiles match the task requirements. F.

Normalised feedback intensity profiles of participants in blocked stop and blocked hit conditions, expressed against time-to-target. Participants

produce stronger responses at matching time-to-target in the hit condition, consistent with simulation results for hit and stop. G. Normalised feedback

intensity profiles of participants in blocked stop and blocked hit conditions, expressed against position. Participants produce matching responses within

hit and stop conditions, supporting model simulations for stop and hit conditions, and not stop and long-stop. Error bars in experimental results

represent 95% confidence intervals.

https://doi.org/10.1371/journal.pcbi.1010192.g003
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Even with similar simulated kinematics, that deviate from each other only in the last por-

tion of the movement, the OFC model predicts striking differences in the control policies for

stop and hit conditions (Fig 3B and 3C, blue and red traces) or hit and long-stop conditions

(Fig 3B and 3C, red and green traces) when expressed against time-to-target. On the other

hand, when expressed against position, even different controllers (hit vs stop) show no differ-

ences in feedback intensities, while identical control (stop vs long-stop) exhibit clear differ-

ences (Fig 3D). Among other things, these results point out limitations of position as a

dependent variable in determining the changes of control policies, and provide yet additional

support for time-to-target.

Our models make a few predictions for the behaviour of human participants. First, it chal-

lenges the classic assumption that visuomotor feedback response profiles are always bell

shaped, if probed at evenly spaced locations or movement times. Instead, we propose that

the bell-shaped feedback response profiles are consequential to the specific kinematic values

imposed by the experiments, and other, for example monotonically decreasing intensity pro-

files, are also possible with faster movements (Fig 3D). Second, our simulations also make

predictions on relative differences between the feedback intensity profiles in stop and hit con-

ditions. Particularly, we expect the hit condition to produce stronger responses than the stop

condition for short times-to-target, with this relationship inverting for long times-to-target if

the two types of movements require different feedback controllers (Fig 3B and 3C). Note, that

while in previous studies it is typical to compare such response profiles in terms of perturba-

tion onset location, here no difference between hit and stop is predicted in position-dependent

profiles (Fig 3D).

Human control policies match model predictions in hit and stop

conditions

In order to compare the behaviour of our participants to the model predictions, we first ana-

lysed our results from the blocked schedule of the experiment. Here every participant has com-

pleted a block of 416 trials of hit condition and another block of 416 trials of stop condition,

with the order counterbalanced across all participants. Our experimental results qualitatively

match the predictions of our model. First, participants successfully differentiated between the

kinematics of the hit and the stop condition, with both types of movements resulting in match-

ing early and peak velocity (vpeak,stop = 58.9 cm/s, vpeak,hit = 58.1 cm/s), but with differences

towards the end of the movement such that the velocity at the target is higher for the hit condi-

tion (Fig 3E). Specifically, in the hit condition participants produced movements with average

velocity at the target of 38.5 cm/s, while successfully stopping at the target in the stop condi-

tion. In addition, similar to the model simulations, movements in the hit condition were of

slightly shorter duration (630 ms vs 700 ms).

Qualitatively, the experimental feedback responses also match the model predictions (Fig

3F and 3G). First, due to relatively fast reaching velocities in our experiment, as well as the lack

of maintained perturbations, all perturbations were induced at short times-to-target (under

550 ms). For comparison, in our previous study [26] perturbations were induced at times-to-

target that ranged between 300 ms and 1000 ms, with peak feedback intensities recorded for

perturbations with time-to-target at 400 ms. Second, both our data and the model produce

feedback intensities at short times-to-target that are higher for the hit condition than for the

stop condition, even in movement segments where the kinematics are otherwise similar. In

addition, we also observe no learning effects within this regulation, as the relative behaviour

across conditions is present in the first few blocks of the study, and remains throughout the

entire experiment (S1 Text). Importantly, we do not fit the model to match the data, but
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instead use it to qualitatively describe the relative regulation of stop and hit conditions. As

such, matching features between the intensity profiles of the model (Fig 3B–3D) and the data

(Fig 3F and 3G) imply that similar computational mechanisms may be in action. Finally, our

results also indicate that participants utilise different feedback controllers for the hit and stop

conditions, as the experimental results for the blocked hit condition match the model simula-

tions of the hit, rather than the long-stop condition.

Human participants utilise contextual switching of feedback controllers

In the previous sections we established the differences between the baseline control policies of

hit and stop conditions. Here, we test how these policies change when the exposure to these

conditions is no longer blocked. For example, it is natural in our daily activities to continu-

ously switch between tasks, rather than doing a single task for many repetitions before switch-

ing to a new task. However, the question remains, how switching between different tasks

affects the underlying feedback control policies. To test this, in the second half of the experi-

ment we presented our participants with the same two types of movements (hit and stop), but

now with the conditions randomly mixed across trials, instead of being presented in two sepa-

rate blocks. As such, we could test for one of two possible outcomes:

1. Control policies for stop and hit movements in the mixed schedule match respectively the

control policies in the stop and hit movements in the blocked schedule (Fig 1D). Such an

outcome would indicate that participants are able to easily switch between different control

policies (at least within consecutive trials).

2. Control policies for stop and hit movements in the mixed schedule do not match with the

respective baseline policies, indicating interference when switching among multiple condi-

tions (Fig 1C).

While both outcomes have previously been discussed from the sensorimotor adaptation

perspective, to our knowledge they have not yet been demonstrated for feedback control.

Our participants successfully produced the movements required in the experiment (Fig

4A). Particularly, we observed clear distinctions in the terminal velocity between the hit and

stop conditions, independent of the experimental schedule (blocked or mixed). A two-way

repeated-measures ANOVA showed a significant main effect on condition (hit or stop, F1,13 =

544.2, p� 0.001), but no significant main effect on experiment schedule (blocked or mixed,

F1,13 = 0.710, p = 0.42) or schedule/condition interactions (F1,13 = 0.681, p = 0.42). In addition,

a complementary Bayesian repeated-measures ANOVA analysis showed similar results, with

a very strong effect [53] of condition (hit or stop, BFincl = 1.6 × 1025), and with a tendency

towards no effect of schedule (blocked or mixed, BFincl = 0.379), or condition/schedule interac-

tion (BFincl = 0.409). A similar analysis for peak velocities showed a significant main effect of

condition (hit or stop, F1,13 = 5.94, p = 0.03; although BFincl = 1.12 indicates not enough evi-

dence to either reject or accept the null hypothesis) and condition/schedule interaction (F1,13 =

19.3, p� 0.001; BFincl = 32.6), but not on schedule (blocked or mixed, F1,13 = 1.52, p = 0.24;

BFincl = 0.56 shows a weak tendency towards accepting null hypothesis). The Holm-Bonferroni

corrected post-hoc analysis for the interaction term revealed that participants produced

slightly faster movements in the mixed-hit condition, with the peak velocities matching

otherwise.

We examined the evolution of the experimental visuomotor responses as a function of per-

turbation onset position or onset time across the four different conditions (Fig 4C and 4D).

When expressed against either position or time, the visuomotor intensity profiles do not

show the classical bell-shaped profile where strongest responses occur in the middle of the
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movement and are reduced towards the beginning and end. Instead, our participants pro-

duced the strongest responses for the earliest perturbations, induced at 1/6 of the total forward

movement, with further responses decaying in intensity as perturbations occurred closer to

the target. Moreover, we observed no significant differences in visuomotor responses across

the different conditions and schedules. Three-way repeated-measures ANOVA with condition

(stop or hit), schedule (blocked or mixed) and perturbation location (5 levels) as main factors

showed no effect of condition (F1,13 = 0.486, p = 0.50; BFincl = 0.238 shows substantial evidence

towards no effect), schedule (F1,13 = 0.096, p = 0.76; BFincl = 0.142 shows substantial evidence

towards no effect) or condition/schedule interaction (F1,13 = 0.657, p = 0.43; BFincl = 0.305

shows substantial evidence towards no effect). While we observed a significant main effect of

the perturbation location (F2.9,37.7 = 61.2, p� 0.001 after Greenhouse-Geisser sphericity cor-

rection; BFincl = 9.3 × 1036), such an effect was expected due to the temporal evolution of feed-

back responses. In addition, we observed a significant interaction between perturbation onset

Fig 4. Experimental results of stop and hit conditions in both blocked and mixed schedules. A. Velocity profiles

against position. Both stop conditions and both hit conditions produce respectively similar velocity profiles, showing

that participants successfully performed the task in the mixed schedule. B. Normalised feedback response intensities

represented as a function of time-to-target. Hit and stop movements in the mixed schedule demonstrate differences

when expressed against time-to-target, that match the differences between hit and stop conditions in the blocked

schedule. This supports the hypothesis of contextual controller switching between multiple task-specific controllers. C.

Normalised feedback intensities in all four conditions show no differences when expressed against position or D.

movement time at perturbation onset, as predicted by the OFC simulations. This questions the appropriateness of

position or movement time as the reference frames in which to compare multiple feedback controllers. Error bars and

shaded areas indicate 95% confidence intervals of the mean.

https://doi.org/10.1371/journal.pcbi.1010192.g004
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location and the condition (F2.1,27.0 = 6.26, p = 0.005 after the sphericity correction; BFincl =

6.86), however a Holm-Bonferroni corrected post-hoc analysis on the interaction term did not

indicate any meaningful interaction effects, with none of the significant interactions appearing

at the same perturbation onset location. Finally, the remaining interactions of schedule/pertur-

bation (F2.6,33.9 = 2.67, p = 0.07 after Greenhouse-Geisser sphericity correction; BFincl = 0.289)

and condition/schedule/perturbation (F2.8,36.8 = 0.233, p = 0.86 after Greenhouse-Geisser sphe-

ricity correction; BFincl = 0.075) showed no significant effects. Thus, as a whole our analysis

indicates that the feedback controllers could not be differentiated when expressed as a function

of the position within the movement.

When expressed against time-to-target, the visuomotor feedback responses show decreas-

ing feedback intensities with decreasing time-to-target, with responses virtually vanishing

when the time-to-target approaches zero (Fig 4B). This behaviour is consistent with our

previous models describing the time-gain relationship [26]. In addition, we observe stronger

increases in visuomotor feedback intensity with increasing time-to-target for the hit condition

compared to the stop condition, in both blocked and mixed schedules. Such regulation was

previously predicted by our time-to-target OFC model (see Figure 9C in [26]) for short times-

to-target. Finally, we also observe a qualitative match between the two stop conditions (mixed

and blocked) as well as between the two hit conditions (mixed and blocked), suggesting first

evidence of rapid feedback controller switching in the mixed schedule. This finding holds

equally well in trials immediately after a condition switch, as well as after the trials of the same

movement condition (S2 Text). Qualitatively the increase of visuomotor response intensities

with time-to-target for our specific results could be well described by a line function for each

of the four combinations of condition and schedule. In order to get a quantitative estimate of

the differences between the conditions we performed a Two-way ANCOVA analysis of visuo-

motor response intensity, with schedule and condition as the two factors, and time-to-target as

the covariate. The results showed a significant main effect of condition (hit or stop, F1,275 =

24.8, p� 0.001; BFincl = 9.46 × 103), and time-to-target (F1,275 = 222.8, p� 0.001; BFincl =

1.04 × 1033), but no effect of the experimental schedule (blocked or mixed, F1,275 = 0.098,

p = 0.75; BFincl = 0.138) or of schedule/condition interaction (F1,275 = 1.06, p = 0.30; BFincl =

0.304 shows tendency towards no effect). Such results indicate that we can successfully sepa-

rate the two different controllers when expressing their feedback response intensities (or their

gains) against the time-to-target. Furthermore, we also show that such differences are only

present when comparing the controllers for different tasks, and are not dependent on the pre-

sentation schedule of these tasks. Thus, we demonstrate that our participants successfully

selected an appropriate controller for a hit or a stop task, even in a schedule where the task

could change on consecutive trials.

Discussion

In this study we have demonstrated that humans are capable of rapid switching between

appropriate feedback controllers in the presence of different contextual cues. Specifically, our

participants show systematic differences in feedback responses when performing hitting

movements, compared to reach-and-stop movements. Moreover, the same systematic differ-

ences are present, both when the two tasks are performed in isolation (blocked schedule),

or when rapidly switching from one task to the other (mixed schedule), showing that these dif-

ferences are evoked within a single trial, and not gradually adapted. Finally, these feedback

responses are also well matched with the optimal feedback control predictions for these

responses in hit and stop tasks, further reinforcing accumulating evidence of optimality princi-

pals in the feedback control of human movements.
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In order to gain insight into computational mechanisms that are employed when humans

switch between hit and stop conditions, in this study we formulate our hypothesis through

normative modelling [37, 54–58]. Such an approach compares the behavioural experimental

data to the results simulated computationally through a known bottom-up design. In turn, any

mismatch between the data and the model rules out the mechanism, while matching behaviour

provides support for the likelihood of such a mechanism. Specifically, here we simulate three

different types of control movements: stop movement, where a point mass is stopped at a tar-

get 25 cm away from the start position; hit movement, where the point mass is instead brought

to the same target with nonzero terminal velocity; and a long-stop movement, with similar

kinematics to the hit movement within the 25 cm segment, generated by a stop movement to a

secondary virtual target at 28 cm distance. The hit and stop simulations differed in the imple-

mentation of the feedback controller, with the state dependent costs for the terminal velocity

and terminal acceleration reduced by a factor of 50 for the hit condition. As a result, the two

models inherently simulate the behaviour that is achieved via different controllers. On the

other hand, the long-stop condition was simulated by using the same controller as the stop

condition, but to a target at 28 cm instead of 25 cm. Consequently, such a movement still

maintained a non-zero velocity at 25 cm, virtually simulating a hit-like movement. Notably, in

order to better match the kinematics of a long-stop movement to the kinematics of the hit and

stop movements, we temporally modulated the activation cost R of the long-stop controller,

which we have previously shown does not affect the overall feedback responses in terms of

time-to-target [26]. In general, while kinematics of hit and long-stop models matched well,

the two simulations predicted very different feedback response profiles when expressed both

against time-to-target and against position. Finally, the responses of our participants in the hit

condition matched better with the model simulation of the hit condition, rather than the simu-

lation of the long-stop, providing evidence that humans use different feedback controllers for

different tasks.

Principles of contextual switching have been extensively studied in the context of feedfor-

ward adaptation [30, 31, 34, 59–62]. While these cues vary in effectiveness [30, 59] and are typ-

ically considered as relative weightings of multiple feedforward models [63], strong dynamic

cues such as differences in follow-through [35, 36], lead-in [33, 61], or visual workspace [31,

32] can effectively separate the feedforward models. As multiple recent papers have demon-

strated that voluntary (feedforward) and feedback control likely share neural circuits [24, 39,

64–67], it is reasonable to believe that similar contextual regulation would also be present in

feedback control. However, studies that have shown this parallel changes in the feedback

responses to the learning of the feedforward dynamics, either examined before and after adap-

tation to novel dynamics [24, 64, 68, 69], or during the process of adaptation [19, 70–72],

meaning that the they could not distinguish between the slow adaptation of the feedback con-

troller to each condition or the rapid switching between two controllers. Moreover, other stud-

ies have suggested that feedforward and feedback controllers are learned separately [73, 74]

and may even compete with one another [75], suggesting that these share different neural cir-

cuits and may have different properties. In this study we showed that in the mixed schedule,

where the task goal unpredictably switched between hit or stop tasks on consecutive trials, par-

ticipants evoked different control policies for each task. Furthermore, these policies, evoked

within mixed schedule, well matched with the respective policies in the blocked schedule, sug-

gesting that they were not only different from one another, but also appropriate for each task,

showing the strong separation of the two contexts. While this is not unexpected, as the two hit

and stop tasks are significantly different in their dynamics and thus should act as a strong con-

textual cue, one important result is that we demonstrated that the context regulates the feed-

back, and not only feedforward control. Finally, our results are also consistent with the

PLOS COMPUTATIONAL BIOLOGY Task-dependant switching of feedback controllers

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010192 June 9, 2022 11 / 26

https://doi.org/10.1371/journal.pcbi.1010192


accumulating evidence of the shared relationship between feedforward and feedback control

in human reaching.

One reason why contextual effects on feedback control have not been broadly studied, is

that it is difficult to quantify what really constitutes a change in feedback control policy. For

example, we can trigger responses of different magnitudes by changing the size of the pertur-

bation [41, 42], inducing perturbations at different positions [26, 40] or at different times [20,

37, 76]. However, computationally such differences in response intensity can be achieved

within the same optimal feedback controller without ever changing control parameters [38].

On the other hand, experimental tasks, presented in some of these studies, e.g. reaching

towards narrow, wide or long targets, inherently require different feedback controllers. Specifi-

cally, assuming a similar controller to the one we present in this work, a wide target implies a

reduced ωp,t weight in x-axis compared to the narrow target, thus leading to a different opti-

mum of control matrix L (Eqs 2 and 3). Indeed, human responses in tasks where the target

structure changed (either by shape or by the presence of obstacles [42, 44, 45]) were consistent

with the OFC predictions of two independent controllers [42]. In this article we present two

tasks that also require different feedback controllers, but achieve that while maintaining the

target shape. Instead, we invoke different controllers by modulating the task requirement of

either stopping at the target, or hitting through it. In addition, by combining an OFC model

predictions with our previous work, showing that the time-to-target is a strong predictor of

the feedback intensity in optimal control tasks [26], we not only show that the human behav-

iour is consistent with two independent controllers, but also that it cannot be explained by one

controller. Specifically, we simulate the behaviour either by recomputing the controller L (Fig

3B–3D, hit and stop), or by updating the state estimate x̂ and using the same controller L (Fig

3B–3D, stop and long-stop), to compare with the experimental results (Fig 3F and 3G). These

results show that humans indeed change their control policies when the task goal (e.g. hit or

stop) changes. Thus, by combining behavioural results with normative control models we can

clearly identify that it is specifically the change in control, and not other mechanisms, that is

responsible for the regulation observed in the experimental data.

Previous studies have demonstrated that visuomotor feedback intensity profiles are roughly

bell-shaped along the movement—low at the beginning and the end, and peaking in the mid-

dle [26, 40]—leading to assumptions that these gains might parallel the velocity [39, 67]. Our

simulations and experimental results (Fig 3D and 3G) demonstrate that this bell-shape profile

is not fixed, and that other profiles are possible. In our previous work, we established a robust

relationship between the visuomotor feedback intensities and time-to-target, demonstrating

that time-to-target is the fundamental variable that modulates the responses, given that the

task goal (and thus the feedback controller) remains the same [26]. This means that the bell-

shaped profile is simply a by-product of a specific timing of perturbations, and is not regulated

by their onset location. As a consequence, the shape of these feedback intensity profiles can be

modulated away from the bell-shaped profile by changing movement speed, target distance or

acceleration profile. Such results illustrate possible caveats in the experimental paradigms of

motor control: historically, some of the task requirements have been largely consistent, partic-

ularly in terms of reaching distance, reaching speed or duration. This may result in some

measured behavioural outcomes being specific to these kinematics or conditions rather than

representing the general features of the motor control system. Thus, while we do not advocate

for routinely altering the standard experimental and analytical methods, it is worth consider-

ing the specific biases that such methods may contribute to a given study.

One popular way of looking at the visuomotor responses in humans is how they vary with

position in a movement. Indeed, numerous studies either analyse the evolution of responses

against position [26, 39, 40], or induce perturbations based on a fixed position [7, 9, 25, 41,
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49–51], with the expectation that these perturbations induce similar responses unless the

control changes. For example, [9] demonstrated different feedback responses, induced at a

matched position in movements towards different targets. While we believe that these different

target properties indeed suggest different feedback controllers, such a distinction cannot be

reliably tested with only one perturbation, matched by position. Our results clearly demon-

strate the limitations of position as the main variable to probe such control. On one hand, even

with similar kinematics for the majority of the movement, simulations of stop and long-stop

movements predict radically different responses at matching positions (Fig 3D), despite the

fact that these are generated with identical controllers. On the other hand, different controllers

for hit and stop conditions still produced roughly matching feedback responses at the same

position, consistent with the experimental data (Fig 3D and 3G). In contrast to position as the

main variable, OFC simulations in both this study and our previous work [26] show that the

same controller, when expressed against time-to-target, produces matching response profiles,

independent of other kinematic factors such as movement velocity or position of the perturba-

tion onset (Fig 3B and 3C). Furthermore, different controllers, such as hit and stop, produce

feedback responses with systematic differences when expressed against time-to-target, exactly

as demonstrated by our participants. Thus, we propose that time-to-target is the better refer-

ence frame for comparing feedback responses.

In this study we have raised two alternative hypotheses about the regulation of feedback

controllers within the mixed schedule. The first possibility is that the feedback control gradu-

ally adapts to a given task over a few consecutive trials, similar to the feedforward control dur-

ing learning of a force field or visuomotor rotation. If such adaptation was true, we expect

different feedback intensities between the hit and stop conditions in the blocked schedule as

the controller has enough trials to reach steady-state behaviour. However, in the mixed sched-

ule the controller would drift between the equilibrium of hit and stop conditions, producing

similar responses for mixed hit and mixed stop conditions. Note that even in such a case

where only a single controller is performing both hit and stop trials, we would not necessarily

expect any effects on the kinematics or the participant’s ability to complete the task. Instead,

due to the feedback nature of the control, a sub-optimal controller would still complete the

movement, but produce sub-optimal (e.g. more costly) responses in the presence of external

disturbances. The second possibility is that an appropriate controller is selected before each

movement based on the provided context, allowing immediate switching between tasks. In

this case, the feedback intensity profiles would match for the same task, regardless of the

schedule of their presentation. That is, we expect to see similarities between both hit condi-

tions, as well as between both stop conditions, but differences between any two hit and stop

conditions. Our experimental results strongly support the latter option, as we not only observe

differences between mixed hit and mixed stop conditions, but also observe their respective

match with the blocked conditions. While our results do not rule out the adaptation of feed-

back controllers in general, we do demonstrate that different optimal controllers can be rapidly

selected and switched between for familiar tasks.

One important aspect of the relationship between feedforward and feedback control is that

modulating one of them should affect the behaviour of the other. Indeed, previous work has

demonstrated that human participants changed their feedback gains after adapting their feed-

forward models to novel dynamics [11, 19, 24, 64, 68–72]. However, an adapted movement in

the force field typically produces kinematics that are similar to those in baseline movements,

suggesting that such change of gains is achieved at matching times-to-target, and with the

same task goal. Thus, our proposed framework that the relation between feedback intensities

and time-to-target is unique for a unique controller would predict that the feedback gains

would remain unchanged. As a result, we can not directly explain this change of control gains,
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unless the feedback controller somehow changes during adaptation. One factor driving such a

change is that adapted movements in the force field are more effortful than baseline move-

ments, due to additional muscle activity required to compensate for the force. An increased

effort in the context of OFC simulations would thus increase the model activation cost R,

resulting in a change of optimal feedback gains and intensities at matching times-to-target. In

addition, the presence of a force field likely influences the biomechanics of the movement (par-

ticularly the muscle viscosity b), changes the state transition due to the external dynamics (via

state transition matrix A), and updates the state uncertainty [77], resulting in the same control-

ler being applied to a different control plant, and thus producing different responses. More-

over, if the controller is optimised to to this new control plant, adaptation will inevitably

require a new feedback controller. Therefore, such changes in feedback control are expected,

even though conventionally it appears that the task goal remains the same after adaptation to

the novel dynamics.

Even though many recent studies use force channel trials [52] to accurately measure the

visuomotor feedback responses [7, 11], often these brief perturbation trials are comple-

mented with maintained perturbation trials [19, 26, 41, 46–48, 50, 51]. This is because

brief perturbations within a channel trial are task-irrelevant, and can be ignored without

compromising the task, whereas maintained perturbations strengthen these responses as

they require an active correction for the participant to reach the target. However, we have

recently shown that these maintained perturbations also force a non-trivial extension of the

movement duration compared to the non-perturbed movement, and thus complicate the

relationship between the perturbation onset location and the time-to-target. Hence, in order

to consistently evaluate the control behaviour and its relation to the time-to-target, here we

deliberately chose to only induce perturbations within the force channels and not to include

the maintained perturbations. Although this generally decreases overall feedback intensities,

our participants produced clear responses that exhibited the temporal evolution as predicted

by the OFC model simulations.

Another possible limitation of using channel trials to probe the feedback control is the

potential interference of the stretch reflex. Specifically, small forces produced on the hand by

the channel could set on the feedback corrections [78] that superimposed onto the measured

visuomotor responses. However, as the onset of the force channel occurs prior to any move-

ment of the participant, long before the time of the visual perturbation, the channel onset

will not produce a stretch reflex response timed to the visual stimuli. More importantly, such

effects, as well as any other corrections to the channel onset would be present in all channel

trials (including zero-perturbation trials), and thus would cancel-out in the net feedback

responses, as they would not depend on the direction of the visual perturbation. As a result, it

is unlikely that the force channels introduced systematic effects into our recorded visuomotor

feedback signal. Similarly, we also saw no behaviour differences between simulations of free

movements, that we presented in our results, and analogous simulations of matching duration

movements in channel trials (S1 Fig).

Most studies of motor learning study contextual switching in conjunction with dual adap-

tation by introducing participants to novel force fields or visuomotor rotations, for which

they do not have pre-existing feedforward controllers. In turn, we typically see slow, simulta-

neous adaptation to applied perturbations, as well as context-induced switching of the mem-

ories after the transient learning phase is over. Importantly, for familiar tasks this switching

is evoked immediately, without the need to re-learn the dynamics again on re-exposure. This

is clearly seen on the second or later days after adapting to dual force fields [35, 79]. In this

study, our main goal was to demonstrate that such contextual switching is also possible for

feedback controllers, rather than to demonstrate gradual adaptation. Therefore, in our
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experimental design we consciously selected two tasks (stop or hit) that were not novel to

our participants. While there remains a possibility that due to the dynamics of the vBot envi-

ronment both tasks were different to stop or hit movements outside of the lab, and thus

novel to participants, we always started our studies with the blocked schedule, and only then

followed with the mixed schedule to make sure that the different baseline controllers are

already available to our participants. An interesting control would be to first test the partici-

pants in the mixed schedule, followed by the blocked schedule. However, we believe such

control would mainly test whether the two task choices were novel to participants or not,

which is not the focal point of our study.

In summary, here we again demonstrate that time-to-target (which could be considered as

one form of urgency) [20, 26, 39, 76, 80], and not position or velocity, act as a primary predic-

tor for the feedback response intensity when the task goal is fixed. Moreover, when comparing

multiple tasks, the time-to-target reference frame consistently separates the feedback control

policies for these tasks—an outcome that fails when comparing two different controller gains

within the position reference frame. While position within the movement, and velocity at the

time of a perturbation, definitely influence the controller responses, our results clearly demon-

strate that the effect of these variables on overall control may be somewhat exaggerated in

the previous literature. For example, our participants produced temporal evolution of the

responses to visual perturbations that neither paralleled the velocity, nor showed the typical

variation with position (with peak responses achieved mid-movement), but could be explained

by the time-to-target dependency that was predicted by OFC. In addition, participants were

able to switch their feedback controller from one trial to another, demonstrating the principle

of contextual switching for feedback control. Such switching, well known in feedforward con-

trol, further reinforces accumulating evidence of the shared connections between feedforward

and feedback control. Most importantly, our results demonstrate that the visuomotor feedback

control in humans not only follows the principles of optimal control for a singular task, but

also selects an appropriate controller for that task upon presenting the relevant context.

Methods

Ethics statement

The study was approved by the Ethics Committee of the Medical Faculty of the Technical Uni-

versity of Munich. All participants have provided a written informed consent before participat-

ing in the study.

Experimental setup

Fourteen right-handed [81] human participants (age 21–29 years, 5 females) with no known

neurological diseases and naïve to the purpose of the study took part in the experiment. Partic-

ipants performed forward reaching movements either to a target (stop condition) or through

the target (hit condition) while grasping the handle of a robotic manipulandum (vBOT, [82])

with their right hand, with their right arm supported on an air sled. Participants were seated in

an adjustable chair and restrained using a four-point harness in order to limit the movement

of the shoulder. A six-axis force transducer (ATI Nano 25; ATI Industrial Automation) mea-

sured the end-point forces applied by the participant on the handle. Position and force data

were sampled at 1 kHz, while velocity information was obtained by differentiating the position

over time. Visual feedback was provided via a computer monitor and mirror system, such that

this system prevented direct vision of the hand and arm, and the virtual workspace appeared

in the horizontal plane of the hand (Fig 5A). The exact timing of any visual stimulus presented

to the participant was determined from the graphics card refresh signal.
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Participants controlled a yellow cursor (circle of 1.0 cm diameter) by moving the robotic

handle. The centre position of this cursor in the virtual workspace always matched the physical

position of the handle. Every experimental trial was initiated when the cursor was brought into

the start position (grey circle of 1.6 cm diameter), which was located 20 cm in front of partici-

pants’ chest and centred with the body. When the cursor was within this start position, the

circle changed from grey to white and the type of experimental trial was indicated by the pre-

sentation of a target. After a random delay, sampled from an exponential distribution with

λ = 0.7 and truncated outside 1.0 s–2.0 s interval, a tone was played to indicate the start of the

movement. If participants failed to leave the start position within 1000 ms after this tone, the

procedure of the current trial was aborted and restarted.

Fig 5. Experimental setup. A. Participants controlled a yellow cursor by moving a robotic handle. The cursor was projected via a

screen-mirror system directly into the plane of the participant’s hand. Figure copyright 2008 Society for Neuroscience. B. Stop

condition. Participants were instructed to reach with the cursor through a red line and stop within the blue target. Target perturbations

were occasionally induced via target jumps of 2 cm laterally. C. Hit condition. Participants were instructed to reach through the red

target and stop within the blue area. Target perturbations (2 cm laterally) were again induced on random trials. D. Visual feedback was

presented after each trial. Participants were shown the workspace with the start position and the target still present. In addition, two

indicators were displayed. A bar chart at the top-right part of the workspace scaled proportionally with the absolute peak velocity, and

was green if the velocity was within the required range as indicated by two grey brackets. A horizontal bar indicating the actual forward

location where this peak velocity was achieved was displayed between the start and target positions. This bar was green if the peak

location matched the experimental requirements, indicated by two large rectangular blocks. If both location and peak amplitude

criteria were successfully fulfilled, participants were rewarded with one point. If at least one of the two criteria was not fulfilled, the

respective indicator turned red instead of green, and no point was provided. In both hit and stop experiments participants were

instructed to move through the red workspace element and stop at the blue, and were rewarded with one point if they both intercepted

the target and fulfilled both velocity requirements.

https://doi.org/10.1371/journal.pcbi.1010192.g005
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Over the course of the experiment the participants were tasked to complete two types of

movements: stop movements, where they were required to stop within the target (a circle of

1.2 cm diameter, located 25.0 cm in front of the start position) (Fig 5B), or hit movements,

where they had to intercept the target without stopping, and instead stop in a designated

stopping area (a blue rectangle, [width, height] = [15 cm, 4 cm], centred 5 cm beyond the tar-

get) (Fig 5C). The reaching movement was considered complete once the centre of the cursor

was maintained for 600 ms either within the area of the target in stop trials, or within the

stopping area in the hit trials. In addition, if the movement duration was longer than 4.0 s,

the trial was timed-out and had to be repeated. After each trial, the participant’s hand was

passively moved back to the start position by the vBOT, while the feedback of the previous

trial was provided on screen (Fig 5D). All movements were self-paced, with short breaks pro-

vided every 208 trials, and a longer break (5–10 minutes) provided at the half-way point of

the experiment.

Experimental paradigm

Participants performed reaching movements in four conditions—blocked stop, blocked hit,

mixed stop and mixed hit—that were part of a single experiment. Across these conditions, par-

ticipants were required to either reach to the target and stop there (the stop conditions), or to

reach through the target and stop in the designated stopping area (hit conditions). In order to

easily cue the distinction between the hit and stop conditions, the two types of trials had small

visual differences. For the hit condition participants were presented with a red target (a red cir-

cle of 1.2 cm diameter) and a rectangular blue stopping area of dimensions 15 cm by 4 cm,

centred 5 cm beyond the target (Fig 5C). For the stop condition participants were presented

with a target that was otherwise identical to the target in hit condition, but was blue in colour,

and with a horizontal, 15 cm wide red line, that was placed 3 cm before the target (Fig 5B).

While this line had no functional interaction with the experiment, it allowed us to consistently

instruct the participants to always perform reaching movements so that they intercept the red

element in the workspace, and stop within the blue element.

In order to probe the visuomotor feedback responses of participants, during some reaching

movements we briefly perturbed the target by shifting it 2.0 cm laterally for 250 ms before

returning back to the original position (Fig 2A). These perturbed trials were always performed

within the virtual mechanical channel, where participants were free to move along the line

between the start position and the target, but were laterally constrained by a virtual viscoelastic

wall with stiffness of 2 N/m and damping 4000 Ns/m [7, 40, 52]. As the perturbations were

always task-irrelevant, this channel therefore did not obstruct participants to complete the

trial. However, as participants still produced involuntary feedback responses due to the target

shift, the virtual channel allowed us to record the forces that participants produced due to the

perturbations and measure the intensities of the visuomotor feedback responses.

For each type of movement (i.e. hit or stop) there was a total of 11 different perturbations.

Ten of these perturbations were cued during the reaching movement as participants crossed

one of the five perturbation onset locations, equally spaced between the start position and the

target position (4.2, 8.3, 12.5, 16.7, and 20.8 cm from the centre of the start position). At all of

these five locations the target could either shift to the left or to the right. In addition, one zero-

magnitude perturbation was also included, where the movement was simply performed within

the channel without any target shift in order to probe the force profile of the natural move-

ment. Finally, in addition to the perturbation trials we also included non-perturbed trials

where participants simply reached towards the target without any target perturbation and

without the virtual channel constraining the hand.
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In order to present the different perturbations in a balanced manner, we combined differ-

ent types of trials in blocks of 16 trials. One block of 16 trials contained 11 perturbed trials (5

perturbation onset locations x 2 directions, plus one neutral movement in the force channel),

and 5 non-perturbed movements without the force channel. Each of the four experimental

conditions consisted of 26 such blocks, with the order of trials fully randomised within each

block, resulting in 416 trials per condition and 1664 trials overall.

In the first half of the experiment, participants were always presented with the two blocked-

design conditions (blocked hit and blocked stop), with the order of the conditions balanced

across the population of participants. That is, each participant started with 416 trials of stop tri-

als, followed by 416 hit trials or vice-versa. In the second half of the experiment, the two final

conditions—mixed hit and mixed stop—were presented in a pseudo-random order within the

same blocks. While individual trials within mixed conditions were identical to the individual

trials within the respective blocked conditions, they were now presented in a pseudo-rando-

mised order. Specifically, the remaining 832 trials were divided into 26 blocks of 32 trials, with

each block consisting of 16 hit and 16 stop trials fully randomised within this block. Such ran-

domisation resulted in a percentage split where 52% of trials were presented after a condition

switch, 26% of trials were presented after exactly one trial of the same condition, 12%—after

exactly two trials of the same condition, and larger clusters with diminishing frequency.

Feedback regarding movement kinematics

In theory, the movements in hit condition could be interpreted as the movements, where the

goal is to go through the via-point (the red target) and stop at the blue stopping area. As a

result, such movements could simply be treated by participants as the stop movements with

longer movement distance and a less restrictive target. Typically for such reaching movements,

humans would produce a velocity profile that is bell-shaped, with peak velocity near the mid-

dle of the movement, and therefore further along the movement than in the stop condition. In

order to avoid such differences and keep the velocity profiles comparable between the two con-

ditions, we provided the task-relevant feedback on the velocity profiles, specifically the peak

velocity and peak velocity location, to our participants (Fig 5D).

Independent of the experimental condition, participants were required to produce the

movements with the peak velocity of 60 cm/s ± 8 cm/s, and the peak velocity location within

11.25 cm–13.75 cm movement distance (or 45%-55% of the distance between the start location

and the target). The peak velocity was indicated as the small bar chart at the top-right of the

screen, with the required velocity range indicated by two grey brackets. If the velocity target

was matched, the bar chart turned green, otherwise it was red. Similarly, the peak velocity loca-

tion was shown as a horizontal bar, centred around the movement distance where the peak

velocity was reached. If this location was within the target range (also indicated by grey brack-

ets), it was displayed as green, otherwise it was red. Participants were rewarded one point if

both velocity requirements were successfully met, and the cursor intercepted the target during

the movement.

Data analysis and code availability

All data was pre-processed for the analysis in MATLAB 2017b: force and kinematic time series

were low-pass filtered with a tenth-order zero-phase-lag Butterworth filter with 15 Hz cutoff

and resampled at 1 kHz to account for an occasional missed sample during the signal record-

ing. All subsequent analysis was performed in Python 3.9.4 and JASP v0.14.1 [83]. First, raw

visuomotor feedback intensities were calculated from the force responses, recorded after the

induction of a target perturbation. Specifically, for every perturbation trial we averaged the

PLOS COMPUTATIONAL BIOLOGY Task-dependant switching of feedback controllers

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010192 June 9, 2022 18 / 26

https://doi.org/10.1371/journal.pcbi.1010192


lateral force response over a time window of 180 ms–230 ms after the onset of the perturba-

tion, and subtracted a neutral force profile over the matching time window. This method and

the particular time window has now been used in numerous studies to calculate the intensity

of the early involuntary visuomotor feedback response [7, 25, 26, 40, 41, 50, 51]. As the direc-

tion of the response differed based on the perturbation direction, we reversed the direction of

the intensities of responses to the leftward perturbations, so that positive intensities always

indicate movements in correct direction, and grouped all intensities by the perturbation onset

location. Second, we normalised mean feedback responses between 0 and 1 for each partici-

pant in order to avoid the group effect being biased towards participants with stronger

responses. Finally, in our analysis the start of all movements was defined as the last time sam-

ple where the cursor is still within the area of the start circle, and the end of the movement was

defined as the last time sample before the cursor enters the target circle. Time-to-target values

were extracted from the data for every perturbation trial by subtracting the perturbation onset

time from the movement end time.

In this article we provide two types of statistical analysis: the conventional frequentist statis-

tics, as well as complementary Bayesian analysis that is presented as Bayesian factors [53],

which instead of a simple hypothesis testing provides evidence for or against the null hypothe-

sis. As a result, among other things, Bayesian analysis allows us to distinguish between accu-

mulating evidence for the null hypothesis, and simply lacking evidence in either direction due

to low power or small sample size.

All the Jupyter notebooks for the data analysis, pre-processed experimental data and statis-

tical analysis conducted in this article are available at https://doi.org/10.6084/m9.figshare.

17113904.v1.

Computational modelling

In this study we formulated our initial hypothesis about the feedback control mechanisms in

humans by first simulating the behaviour of the optimal feedback controller (OFC). Specifi-

cally, we used a finite-horizon linear-quadratic regulator framework—a relatively simple OFC

that assumes perfect sensory input, as well as no control-dependent noise, while still being able

to capture a significant part of the variance of human reaching movements [38, 84]. In order

to model the feedback behaviour of our human participants, we first simulated virtual move-

ments of a point mass with m = 1 kg, and an intrinsic muscle damping b = 0.1 Ns/m. This

point mass was controlled in two dimensions by two orthogonal force actuators that simulated

muscles, and regulated by a control signal ut via a first-order low-pass filter with a time con-

stant τ = 0.06 s. At time t within the movement, such system could be described by the state

transition model:

xtþ1 ¼ Axt þ Bðut þ xtÞ; ð1Þ

where A is a state transition matrix, B is a control matrix, and ξt is additive control noise. For

one spacial dimension A and B are defined in discrete time as:

A ¼

1 dt 0

0 1 � bdt=m dt=m

0 0 1 � dt=t

2

6
4

3

7
5;
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B ¼

0

dt=t

0

2

6
4

3

7
5

Finally, to simulate our model in discrete time we used the sampling rate δt = 0.01 s.

State xt exists in the Cartesian plane and consists of position~p, velocity~v and force~f (two

dimensions each). The control signal ut is produced via the feedback control law:

ut ¼ � Lxt ð2Þ

where L is a matrix of optimal feedback control gains, obtained by optimising the performance

index (also known as the cost function):

J ¼
XN

t¼0

xT
t Qtxt þ uT

t Rtut ¼
XN

t¼0

op;tð~pt � ~p�Þ2 þ ov;t k~vtk
2 þ of ;t k

~f tk
2 þ or;t k utk

2: ð3Þ

Here xT
t Qxt and uT

t Rut are two components of the total cost, known as state-cost and a

control-cost respectively. In addition, ωp, ωv and ωf are position, velocity and force state cost

parameters, ~p� is a target position, ωr is the activation cost parameter and N is the duration of

the movement, here required as a model input. Within the finite-horizon formulation, the cost

parameters can be non-stationary and thus be different for every time-point. However, in our

simulations we set Q = 0 for t 6¼ N, consistent with [37, 85].

In this study we simulate three different controllers that we call stop, hit and long-stop.

While the stop and long-stop controllers are derived from the identical set of costs state-costs

Q, they are used for slightly different movements (25 cm and 700 ms for stop, 28 cm and 800

ms for long-stop). We used ωp = 1.5, ωv = 1 and ωf = 0.1 as the values for the state cost parame-

ters in this model, and the activation cost R = 3 × 10−6. Furthermore, in order to better match

the forward velocity profiles, we also introduced a non-stationarity in the activation cost R of

the long stop movement, where the total integral of the activation cost over the movement is

not changed, but this cost develops over time during the movement. Specifically, at a time t in

the trial, the activation cost for the long-stop movement was computed by:

Rlong� stopðtÞ ¼ RCðtÞ; ð4Þ

where

CðtÞ / exp p
t þ q

r

� �

; ð5Þ

and the mean of C(t) equals 1 for the duration of the trial, so that Rlong-stop produces the same

amount of activation as R over the duration of the trial. Here p = 1, q = -1000 and r = 65 are

constants, fit via trial and error in order to produce the forward velocity profile of long-stop

condition that matches the velocity of stop and hit conditions. We have previously shown that

such modulation only affects the kinematics of the movement, but does not change the feed-

back responses when expressed against the time-to-target [38]. On the other hand, in order to

incentivise the hit controller to produce faster movements at the target, we reduced the cost

parameters for terminal velocity and terminal force by a factor of 50. As a result, such control-

ler produced hit-like movements that were aimed directly at a target, positioned at 25 cm

distance, over 620 ms, which matched the kinematics of the long-stop controller over this

movement segment.
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Finally, for each controller we simulated feedback response intensity profiles along the

movement, which we then used to compare the control policies predicted by each controller.

To do so, we induced lateral target perturbations of 2 cm magnitude during the simulated

movement to the target and recorded the corrective force, produced by each controller as a

result of these perturbations. While in the experimental study we only induced such perturba-

tions at five different onsets due to practical reasons, in our simulations we could perturb the

movements at every point in time and fully map the response intensity profiles over the move-

ment. Thus, for each model we simulated different movements with perturbations at each

movement time-step (i.e. every 10 ms), with one perturbation only happening once per move-

ment. In addition, to simulate the visuomotor delay that is present in humans, we delayed the

onset of each perturbation by 150 ms, so that for the perturbation triggered at time t, the target

is shifted at time t + 150 ms. We then averaged the force, produced by our model over a time

interval 10 ms–60 ms after the target was shifted (160 ms–210 ms after the perturbation was

triggered), representing the visuomotor response window of 180 ms–230 ms in human sub-

jects. Note that we used an earlier window for the model simulations than for the human sub-

jects as the responses in the simulations ramp up fast due to muscles simplified to a single low

pass filter.

Supporting information

S1 Text. Initial learning of feedback controllers. Here we verify whether our participants

developed different feedback controllers for hit and stop tasks over the blocked schedule, or if

these controllers were innate. To do so, we analyse the visuomotor responses in the first few

blocks of the study, showing that these responses can be considered innate.

(PDF)

S2 Text. Effect of condition clustering in mixed schedule. Visuomotor responses were ana-

lysed in trials immediately following the condition switch (hit to stop or stop to hit) in mixed

schedule. Analysis shows same regulation as in the entirety of the mixed schedule, implying

rapid switching.

(PDF)

S1 Fig. OFC model simulations in channel trials. Model simulations performed in cbannel

trials, instead of free movement responses. A. Velocity profiles for stop (blue), hit (red) and

long-stop (green) conditions. B. Model simulations of feedback intensities as a function of

time-to-target and C. position for the three conditions. Simulations in the channel trials quali-

tatively predict the same regulation as do the simulations of free movements.

(EPS)
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