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Abstract

Visuomotor feedback responses vary in intensity throughout a reach, commonly explained by optimal control.
Here, we show that the optimal control for a range of movements with the same goal can be simplified to a
time-to-target dependent control scheme. We measure our human participants’ visuomotor responses in five
reaching conditions, each with different hand or cursor kinematics. Participants only produced different feed-
back responses when these kinematic changes resulted in different times-to-target. We complement our ex-
perimental data with a range of finite and non-finite horizon optimal feedback control (OFC) models, finding
that the model with time-to-target as one of the input parameters best replicates the experimental data.
Overall, this suggests that time-to-target is a critical control parameter in online feedback control. Moreover,
we propose that for a specific task and known dynamics, humans can instantly produce a control signal with-
out any additional online computation allowing rapid response onset and close to optimal control.

Key words: motor control; optimal feedback control; reaching; time-to-target; visuomotor control; visuomotor
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Significance Statement

Human behavior has widely been explained using stochastic optimal feedback control (OFC), formulating
movement control as a set of time-dependent feedback and control gains. However, OFC is computational-
ly expensive leading to questions about whether such a theory could be implemented in real time. Here, we
show that OFC could be approximated by a simple relationship between feedback gains and the time-to-
target over a variety of movement kinematics, matching the evolution of visuomotor feedback gains of our
human participants during reaching. As this relationship to time-to-target is similar across a wide range of
kinematics, this suggests that early stages of the OFC controlled movement could be approximated by a
time-to-target control, saving computational costs and allowing for rapid execution.

Introduction
From intercepting a basketball pass between opponents

to catching a vase accidentally knocked off the shelf, visuo-
motor feedback responses play a familiar role in human
motor behavior. Previous research has extensively analyzed

these responses in human reaching movements (Day
and Lyon, 2000; Saunders and Knill, 2003, 2004, 2005;
Sarlegna et al., 2003; Knill et al., 2011; Reichenbach et
al., 2014; de Brouwer et al., 2017, 2018), and showed an
interesting combination of task-dependent variability on
the timescale of a single movement (Dimitriou et al.,
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2013; Franklin et al., 2014, 2017; Cross et al., 2019), as
well as sub-voluntary feedback onset times (Prablanc
and Martin, 1992; Day and Lyon, 2000; Franklin and
Wolpert, 2008; Oostwoud Wijdenes et al., 2011; Zhang
et al., 2018). These visuomotor feedback responses
have been shown to modulate throughout a movement
depending on the perturbation onset location (Dimitriou
et al., 2013). This observation was explained through
optimality principles, however such control was mod-
eled only indirectly, by replicating velocity profiles and
trajectories of visually perturbed movements (Liu and
Todorov, 2007; Rigoux and Guigon, 2012). In this study,
we test to what degree optimal feedback control (OFC)
can be used to model the visuomotor feedback re-
sponses directly.
Optimal control as a theory of human movement has

normally been compared against other theories in terms
of prediction of kinematics and dynamics (Todorov and
Jordan, 2002; Izawa et al., 2008; Guigon et al., 2007,
2008; Nagengast et al., 2009; Yeo et al., 2016).
Nevertheless, OFC has been used to motivate extensive
studies investigating the control and task-dependent
modulation of feedback responses (Knill et al., 2011;
Pruszynski and Scott, 2012; Nashed et al., 2012, 2014).
The results of these and other studies have highlighted
the flexibility of the modulation of these feedback re-
sponses. While a few studies have compared the pre-
dictions of the controller feedback gains against the
feedback responses in human subjects (Knill et al.,
2011), such predictions have not been made about the
temporal evolution of these feedback responses during
reaching. For example, Dimitriou et al., 2013) show tem-
poral evolution of feedback response intensity through-
out a reaching movement, suggesting that this is similar
to the feedback gain predictions of Liu and Todorov
(2007). However, a direct comparison of these feedback in-
tensities has not been made. Here, we directly compare the
temporal evolution of visuomotor feedback response inten-
sities in human participants with the prediction of these in-
tensities in an OFCmodel.
Visuomotor feedback response intensity over a goal di-

rected reaching movement follows a roughly bell-shaped
profile, with peak intensity in the middle and decay toward
the beginning and the end of the movement (Dimitriou et
al., 2013). The results of Liu and Todorov (2007) suggest
that such modulation is a combination of gains related to
movement position, velocity and acceleration. However,
we do not yet know whether these gains would more
strongly depend on the visual kinematics or haptic kine-
matics. In addition, models of ball catching were shown to
produce systematic errors in the prediction of the hand ki-
nematics when using only velocity or acceleration based
gains (Dessing et al., 2002), suggesting an integration of
multiple state variables to produce the feedback re-
sponse. Evidence of such integration then raises two im-
portant questions. First, could there be other states than
position and its derivatives that also contribute to such
control? Second, how can these responses be produced
so rapidly, when multiple inputs need to be integrated into
one solution?

One method to solve these two problems would be a
controller based on time-to-target. Within a state-space
system, all state variables are constantly changing with
time with a fixed relationship to one another as described
by the state transition and control matrices. Such a sys-
tem can then be re-imagined as a system with time as its
input, and these physical states as the hidden states.
Such mapping simplifies the multiple input system where
the inputs are state variables, to a one-input (time) sys-
tem. Indeed, the expected time-to-target (or time-to-
contact) has been shown to be related to the control in
finger pointing (Oostwoud Wijdenes et al., 2011) and
catching tasks (Dessing et al., 2002). Therefore, we test
whether a simple relation to the time-to-target can ex-
plain the temporal profile of visuomotor feedback re-
sponses in humans. To test our hypotheses, we devised
an experimental paradigm where we offset the usual
bell-shaped velocity profile in the aim to separate the ef-
fect of the times-to-target from the effect of kinematics
(both, of the hand and of the cursor) on the visuomotor
feedback responses. Finally, we compare these results
with a normative OFC model of visuomotor feedback re-
sponses to better understand how and whether these re-
sponses can be the result of optimality and still maintain
rapid onset times.

Materials and Methods
Code availability
The code and the experimental data described in

the paper is freely available online at https://doi.org/
10.6084/m9.figshare.11323289. The code is available
as Extended Data 1.

Participants
Eleven right-handed (Oldfield, 1971) human partici-

pants (five females; 27.36 4.5 years of age) with no
known neurologic diseases took part in the experiment.
All participants provided written informed consent before
participating. All participants except one were naive to
the purpose of the study. Each participant took part in
five separate experimental sessions, each of which took
;3 h. One participant was removed from analysis as
their kinematic profiles under the five experimental ses-
sions overlapped. The study was approved by the Ethics
Committee of the Medical Faculty of the Technical
University of Munich.

Experimental setup
Participants performed forward reaching movements to

a target while grasping the handle of a robotic manipula-
ndum with their right hand. Participants were seated in an
adjustable chair and restrained using a four-point har-
ness. The right arm of participants was supported on an
air sled while grasping the handle of a planar robotic inter-
face (vBOT; Howard et al., 2009). A six-axis force trans-
ducer (ATI Nano 25; ATI Industrial Automation) measured
the end-point forces applied by the participant on the
handle. Position and force data were sampled at 1 kHz.
Visual feedback was provided in the plane of the hand via
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a computer monitor and a mirror system, such that this
system prevented direct visual feedback of the hand and
arm. The exact onset time of any visual stimulus pre-
sented to the participant was determined from the
graphics card refresh signal.
Participants initiated each trial by moving the cursor

(yellow circle of 1.0 cm diameter) into the start position
(gray circle of 1.6 cm diameter) located ;25 cm in front of
the participant, centered with their body. This start posi-
tion turned from gray to white once the cursor was within
the start position. Once the hand was within the start po-
sition for a random delay drawn from a truncated expo-
nential distribution (1.0–2.0 s, mean 1.43 s), a go cue
(short beep) was provided signaling participants to initiate
a straight reaching movement to the target (red circle of
1.2 cm diameter, located 25.0 cm directly in front of the
start position). If participants failed to initiate the move-
ment within 1000ms, the trial was aborted and restarted.
Once the cursor was within 0.6 cm of the center of the tar-
get, participants were notified by the target changing
color to white. The movement was considered complete
when the participants maintained the cursor continuously
within this 0.6 cm region for 600ms. If participants did not
complete the movement within 4 s from first arriving at the
start position (e.g., by undershooting or overshooting the
target), the movement timed-out and had to be repeated.
Otherwise, as long as participants arrived at the target
within 4 s, the trial was considered to have been com-
pleted. After each trial, the participant’s hand was pas-
sively returned by the robot to the start position while
visual feedback regarding the success of the previous
trial was provided (Fig. 1). Movements were self-paced,
and short breaks were enforced after every 100 trials.

Experimental paradigm
Participants performed the experiment under five differ-

ent conditions, each performed in a separate session.
In the baseline condition the cursor matched the forward
movement of the hand, with a peak velocity in the middle
of the movement. In the other four conditions, the cursor
location was scaled relative to the hand location in the for-
ward direction only (with no change in the lateral direction),

such that the cursor and the hand location matched only at
the start and end of the movements (Fig. 2). In two of the
conditions (matched-hand velocity), the hand velocity
matched the baseline condition throughout the movement
(with the peak in the middle of the movement) but the cur-
sor velocity peaked either earlier (33% of movement dis-
tance) or later (66% of movement distance). In the other
two conditions (matched-cursor velocity), the cursor veloc-
ity was matched to the baseline condition throughout the
movement (with the peak in the middle of the movement)
but the hand velocity peaked either earlier (33% of move-
ment distance) or later (66% of movement distance). The
difference between the cursor velocity and the hand veloc-
ity was produced through a linear scaling of the cursor ve-
locity as a function of the forward position (Fig. 2A).
Specifically, for the two conditions where the position of
the peak cursor velocity is earlier than the position of the
peak hand velocity (Fig. 2, top), this scaling was imple-
mented as:

vc
vh

¼ �0:012d1 1:6; (1)

where vc and vh are cursor and hand velocities, respec-
tively, and d is the distance along the movement direction
in %. The cursor velocity was therefore manipulated by a
linear scaling function such that its velocity is 160% of the
hand velocity at the beginning of the movement, linearly
decreasing to 40% at the target location (Fig. 2, top). For
the two conditions where the position of the peak cursor
velocity is later than the position of the peak hand velocity
(Fig. 2, bottom), this scaling was implemented as:

vc
vh

¼ 0:012d10:4; (2)

such that the velocity gain function linearly increased from
40% hand velocity at the start of the movement to 160%
at the end of the movement (Fig. 2, bottom). Desired ve-
locity profiles of both the hand and the cursor are shown
in Figure 2B for each condition.
Introducing the differences in velocity profiles across

five experimental conditions allows us to look at the effect
of the time-to-target separately from the kinematics of

Figure 1. Examples of feedback presented to the participants. Feedback regarding the peak velocity and the timing of the peak ve-
locity was provided after each trial. Large gray blocks indicate the velocity peak location target, while the bar chart at the top-right
corner indicates peak y-velocity magnitude. Feedback was provided on the modality (cursor or hand) that matched the baseline,
where the horizontal line indicated the location of the peak velocity in this modality. Left, Velocity peak location is within the target,
but the movement was too fast (unsuccessful trial). Middle, Velocity peak location is too early, but the movement speed is within the
target (unsuccessful trial). Right, Successful trial.
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physical movement. First, as the visual perturbations al-
ways occurred at the five preset hand positions, our de-
sign allows us to maintain the effect of the distance to the
target and distance in the movement constant across all
five conditions. Second, two perturbation locations (one-
third and two-thirds of movement distance) were chosen
so that velocities at those locations matched across multi-
ple conditions (early-peak condition velocity equals base-
line at one-third, and late-peak velocity equals baseline at
two-thirds), allowing for matching velocity contributions
across conditions as well. However, across the three dif-
ferent physical kinematics the time-to-target is varied, al-
lowing us to investigate whether time-to-target has an
effect. Finally, the relative scaling between cursor velocity
and hand velocity in the forward direction also separates
the relative contributions of these two inputs, allowing us
to examine the relative contributions of visual and physi-
cal kinematics in modulating the feedback responses.

Feedback regardingmovement kinematics
In all conditions, one of the velocity modalities (cursor

or hand) was required to be similar to the baseline velocity
profile. Feedback was always provided about the velocity
modality that matched the baseline. Ideal trials were de-
fined as trials in which this peak velocity was between
42 and 58 cm/s with the peak location between 45% and
55% of the movement distance with no target overshoot.
Participants were credited one point for achieving an ideal
trial and zero points otherwise, however all the trials were
included in the analysis. After each trial, visual feedback
about the peak velocity and the location at which this
peak occurred was provided to the participants graphi-
cally (Fig. 1). The peak velocity was indicated on the right-
hand side of the screen with the length of a bar and the
velocity target. This bar changed color from red to green if
the velocity was within the ideal range. The location of the
peak velocity was indicated as a horizontal line between

home and target positions at the exact location it was
achieved, along with the ideal range. This line was green
when the location of the peak velocity was within the ideal
range, and red otherwise. Overshooting the target was
defined as the position of the cursor exceeding the center
of the target in the forward direction by.0.9 cm. If partici-
pants reached the target while overshooting during the
movement, a message indicating the overshot was
shown, no points were scored and an error tone was
played to discourage further overshooting movements.

Probe trials
During each session, probe trials were used to measure

the visuomotor feedback intensity, the average strength
of corrective motor response to a change in the visual
feedback of hand position. To elicit these feedback re-
sponses (further visuomotor feedback responses), visual
perturbations were initiated laterally (62.0 cm) at five dif-
ferent hand distances (4.2, 8.3, 12.5, 16.7, and 20.8 cm)
from the start (Fig. 3A). In addition, a zero-amplitude per-
turbation (cursor matched to the lateral position of the
hand) was included, resulting in eleven different probe tri-
als. On these trials the visual perturbations lasted 250ms,
after which the cursor was returned to the lateral location
of the hand. The lateral hand position was constrained in
these trials in a simulated mechanical channel throughout
the movement, thereby requiring no correction to reach
the target. The simulated mechanical channel was imple-
mented with a stiffness of 4000 N/m and damping of 2
Ns/m acting perpendicularly to the line connecting the
start position and the target (Scheidt et al., 2000; Milner
and Franklin, 2005), allowing measurement of any lateral
forces in response to a visual perturbation.
In previous experiments, feedback response intensity

gradually decreased during the course of the experiment
(Franklin and Wolpert, 2008; Franklin et al., 2012). However,
it has been shown that including perturbation trials where

A B

Figure 2. Experimental design. A, top, Hand-cursor velocity scaling for conditions where the cursor position leads the hand position
in y-axis (matched-cursor late-peak hand velocity condition, blue, and matched-hand early-peak cursor velocity condition, yellow).
Bottom, Hand-cursor velocity scaling for conditions where the cursor position lags the hand position in y-axis (matched-cursor
early-peak hand velocity condition, green, and matched-hand late-peak cursor velocity condition, purple). B, Hand and cursor ve-
locity-position profiles required to achieve the ideal movement to the target. Left, Matched-cursor velocity conditions. Middle,
Baseline condition, where cursor position and hand position are consistent. Right, Matched-hand velocity conditions.
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the perturbations were maintained until the end of the move-
ment, and where participants had to actively correct for the
perturbation to reach the target, prevents this decrease in
the feedback intensity (Franklin et al., 2016). Therefore, half
of the trials contained the same range of perturbations as
the probe trials but where these perturbations were main-
tained throughout the rest of the trial and participants had to
correct for this perturbation. The hand movement was not
constrained in these maintained perturbation trials. These
maintained perturbations have now been used in several
studies (Franklin et al., 2016, 2017; de Brouwer et al., 2017).

Session design
Before each session, participants performed 100–300

training trials to learn the specific velocity profiles of the
reaching movements. All training trials contained no visual
perturbations and were performed in the null force field.
The training trials were stopped early once participants
achieved an accuracy of 75% over the last 20 trials and
were not used for the analysis.
Each session consisted of 40 blocks, where each block

consisted of 22 trials performed in a randomized order.
Eleven of these 22 trials were probe trials (five perturbation
locations� two perturbation directions 1 zero perturbation
condition) performed in the mechanical channel. The other
eleven trials consisted of the same perturbations but main-
tained throughout the trial and performed in the null field.
Therefore, in each of the five sessions, participants performed
a total 880 trials (440 probe trials). The order of the five differ-
ent conditions (sessions) was pseudo-randomized and coun-
terbalanced across participants. Participants were not told
about the physical implementation of the different mappings,
but were provided feedback after every trial and knew that
each session was different from previous sessions.

Data analysis
Data were analyzed in MATLAB R2017b and JASP

0.8.2. Force and kinematic time series were low-pass

filtered with a tenth-order zero-phase-lag Butterworth fil-
ter (40-Hz cutoff). The cursor velocity was calculated by
multiplying the hand velocity by the appropriate scaling
function. The visuomotor feedback response was meas-
ured for each perturbation location as the difference be-
tween the force responses to the leftward and rightward
perturbations within a block. To measure the visuomotor
feedback response intensity (mean force, produced as a
response to a fixed-size visual perturbation) this response
was averaged over a time window of 180–230ms, a com-
monly used time interval for the involuntary visuomotor
feedback response (Franklin and Wolpert, 2008; Franklin
et al., 2012, 2016; Dimitriou et al., 2013). In order to com-
pare any differences across the conditions a two-way re-
peated-measures ANOVA was performed with main
effects of condition (five levels) and perturbation location
(five levels). As a secondary method to frequentist analy-
sis we also used the Bayesian factor analysis (Raftery and
Kass, 1995) to verify our statistical results. Bayesian fac-
tor analysis is a method that in addition to the convention-
al hypothesis testing (evaluating evidence in favor of the
alternative hypothesis) allows us to evaluate evidence in
favor of the null hypothesis, therefore distinguishing be-
tween the rejection of the alternative hypothesis and not
enough evidence to accept the alternative hypothesis.
Although we used the time window of 180–230ms to

estimate visuomotor feedback intensity, we also verified
whether the onset of the visuomotor feedback response
in our data are consistent with previously reported values.
To estimate this onset time, we first estimated individual
onset times for each participant at each perturbation loca-
tion and movement condition. To do so, we used the re-
ceiver operator characteristic (ROC) to estimate where
the force reaction to leftwards cursor perturbations devi-
ated from the reaction to rightwards cursor perturbations
(Pruszynski et al., 2008). For each type of trials, we built
the ROC curve for the two signals at 1 ms intervals, start-
ing from 50ms before the perturbation, and calculated
the area under this curve (aROC) for each of these points

A B C

Figure 3. Human visuomotor feedback responses are modulated across the five experimental conditions. A, Lateral perturbations
of the cursor were applied in all five conditions. Perturbations were introduced as 2-cm cursor jumps perpendicular to the move-
ment direction. The perturbation onset occurred at one of five equally spaced hand locations. B, Mean velocity profiles of the hand
in five experimental conditions: matched-cursor early-peak (green), matched-cursor late-peak (blue), matched-hand early-peak (yel-
low), matched-hand late-peak (purple), and baseline (gray). Participants successfully modulated forward movement kinematics to
meet task demands, velocity profiles are skewed for matched-cursor conditions, and are similar to the baseline for matched-hand
conditions. C, Mean visuomotor feedback intensities (mean lateral force from 180 to 230ms after perturbation onset) across all par-
ticipants to cursor perturbations as a function of the hand distance in the movement. Error bars represent 1 standard error of the
mean (SEM). Significant regulation is observed for matched-cursor early-peak and matched-cursor late-peak conditions (blue and
green), but no significant regulation is seen for matched-hand conditions (yellow and purple), relative to the baseline.
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until the aROC exceeded 0.75 for 10 consecutive millisec-
onds. In order to find where the force traces start deviat-
ing from each other, we then fit a function of the form
maxð0:5; k � ðt� tÞ to the aROC curve. The time point
where the linear component of this function first overtakes
the constant component was taken as the threshold
value. Overall, the mean onset times across all conditions
and perturbation locations were 13867ms (mean 6 SD),
with onset times consistent among movement conditions
(F(4,36) = 1.410, p=0.25, and BF10 = 0.105), perturbation
locations (F(4,36) = 1.582, p=0.20, BF10 = 0.252), and their
interactions (F(16,144) = 1.350, p=0.176, and BF10 = 0.005)

Modeling
OFC
In addition to our linear models we implemented two

different OFC models: the classical model (Liu and
Todorov, 2007) and the time-to-target model. The only
comparison between the output of the optimal control
models and the experimental results is via the feedback
gains. For each movement we define time-to-target as the
duration between the onset of the perturbation and the
cursor first intercepting the target. In both models we
modeled the hand as a point mass of m=1.1 kg and the
intrinsic muscle damping as a viscosity b=7 Ns/m. This
point mass was controlled in a horizontal plane by two or-
thogonal force actuators to simulate muscles. These ac-
tuators were controlled by the control signal ut via a first
order low-pass filter with a time constant t = 0.05 s. The
state-space representation of the dynamic system used
to simulate the reaching movements can be expressed as

xt11 ¼ Axt 1BðI1CÞut 1j t; (3)

where A is a state transition matrix, B is a control matrix,
and C is a 2� 2 matrix, whose each element is a zero-
mean normal distribution representing control-dependent
noise. Variables xt and ut are state and control at time t,
respectively. State xt exists in the Cartesian plane and
consists of position~p (2 dimensions), velocity~v (2), force~f
(2), and target position ~pp (2). The presence of these four
states within the state vector means that the information
about all of these states is eventually used for the control.
For our simulation purposes we treat the control-inde-
pendent noise j t as zero.
The state of the plant is not directly observable, but has

to be estimated from noisy sensory information. We
model the observer as:

yt ¼ Hxt 1Dt; (4)

where H ¼ diag½1;1; 1;1; 1;1;0;0� is the observation ma-
trix, and Dt is a diagonal matrix of zero-mean normal dis-
tributions representing state-independent observation
noise. Therefore, our observer can infer the state informa-
tion of position, velocity and applied force of the plant,
consistent with human participants.
The simulated movements were guided by the LQG

controller with a state-dependent cost Q, an activation
cost R, a reaching time N, and a time step t=0.01 s.
However, due to the presence of the control-dependent

noise, the estimation and control processes are not any-
more separable as in the classic LQG theory. In order to
obtain optimal control and Kalman gain matrices we used
the algorithm proposed by Todorov and Li (2005), where
control and Kalman gain matrices are iteratively updated
until convergence.
For both the classical and time-to-target models we si-

mulated three different movement kinematics representing
three different conditions in our experiment, the baseline
and the two matched-cursor conditions. The state-de-
pendent costQwas identical for all three kinematics:

QðtÞ

¼ f 0; for t 6¼ N

ð ~vpð~pðtÞ � ~ppðtÞÞÞ2 1v vjj~vðtÞjj2 1v f jj~f ðtÞjj2; for t ¼ N ;

(5)

where ~vp ¼ ½0:5;1�; v v ¼ 0:02, and v f = 2. The activation
cost R(t) = 0.00001 was constant throughout the move-
ment for the baseline condition, but was modulated for
the two matched-cursor conditions by multiplying it ele-
mentwise by a scaling function:

R9ðtÞ ¼ expðp t1q
r Þ

meanðR9Þ ; (6)

where p, q, and r are constants.
Thus, each movement condition only differed from the

other two by the profile of this activation cost R, but not
by its magnitude. These modified activation costs shift
the timing of the peak velocity toward either the beginning
or the end of the movement by penalizing higher activa-
tions at either the end or beginning of the movements,
respectively.
The mean activation cost is kept constant across the

conditions resulting in each condition being equally “ef-
fortful.” All other simulation parameters were kept con-
stant across the three conditions.
Although LQG is a fixed time horizon problem, we did

not predefine the movement duration N. Instead, we ob-
tained the N, and constants p, q, and r using Bayesian
adaptive direct search (BADS; Acerbi and Ma, 2017) to
maximize the log-likelihood of the desired peak velocity lo-
cation and magnitude. We did not fit any other parameters
beyond this point. Rather, we analyzed our models’ quali-
tative behavior compared with human participant data.
The classical and the time-to-target models only differed

in the way the perturbations were handled. For the classical
model, we simulated perturbation trials at every time step
tp by shifting the target x-coordinate by 2cm at the time
tp 1 120ms. This 120 ms delay was used to mimic the vi-
suomotor delay in human participants, and was taken from
Liu and Todorov (2007). We then averaged the force re-
sponse of the controller over the time window [tp1130,
tp1180] as an estimate of the simulated feedback re-
sponses, equivalent of visuomotor feedback responses in
our participants. This means that our simulated feedback
responses arise due to separate contributions from the
controller position, velocity and acceleration gains. For per-
turbations occurring at times where the movement is over
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before the end of this time window, the intensity of this si-
mulated feedback response is set to zero.
For the time-to-target model we introduced an extension

in the time-to-target after the onset of any perturbation simi-
lar to that observed in our participants. Simulated feedback
intensities were modeled at five locations, matching the per-
turbation locations in our experiment to obtain the appropri-
ate increase in time-to-target after each perturbation. In
order to simulate the response to perturbations we first ex-
tracted the perturbation onset times from movement kine-
matics by performing an unperturbed movement and
recording the time point tp at which this movement passed
the perturbation onset location. We then simulated the post-
perturbation portion of the movement as a new LQG move-
ment with an initial state matching the state at tp 1 120ms
of the unperturbed movement, and movement duration
matching the time-to-target recorded in our participants for
the particular perturbation. Therefore, our time-to-target
model can only simulate the feedback intensities at the five
perturbation locations in the movement. Together, this
keeps our simulated reaches “naive” to the perturbation be-
fore its onset and allows the time-to-target of the simulated
reaches to match the respective time-to-target of our
human participants. Finally, we calculated the simulated
feedback intensities as described previously, using a time
window [10, 60ms] of the postperturbation movement. As in
the previous simulations, these simulated feedback re-
sponses arise due to separate contributions from the con-
troller position, velocity and acceleration gains.

Time-to-target tuning function
In order to understand the mechanisms that might

underlie the consistent relationship between the simu-
lated feedback intensities and the time-to-target, we fit a
mathematical expression to the simulated feedback inten-
sities. We modeled the relationship as the minimum of a
squared-hyperbolic function and a logistic function:

GðtÞ ¼ min
b

ðt� t1Þ2
;

a

11expð� t�t0
t
Þ

 !
; (7)

and used BADS to fit this function to our time-to-target-si-
mulated feedback intensity data by optimizing the log-
likelihood of this fit.
While the logistic function was chosen simply as it pro-

vided a good fit to the data, the squared-hyperbolic arises
from the physics of the system. Specifically, from the ki-
nematic equations of motion for a point mass (m) traveling
a distance (d) under the influence of force F, the distance
can be expressed as:

d ¼ Ft2

2m
1 v0t; (8)

where v0 = 0 is the lateral velocity at the start of perturba-
tion correction. Rearranging gives:

F ¼ 2md
t2

/ 1
t2
: (9)

Hence the lateral force necessary to bring a point mass
to the target is proportional to 1=t2.

Receding horizon OFC
In addition to our finite horizon control we also imple-

mented a receding horizon controller (Guigon et al.,
2019). Irrespectively of the current state of the movement
Xt, the receding horizon controller is defined to aim to ar-
rive at the target at time t1 Th. In essence, such controller
is therefore not different from the finite horizon controller
in its implementation for a single state of the movement.
We implemented the receding horizon controller by iterat-
ing a finite horizon controller described previously, but
with the Th = 500ms, and Q and R costs scaled from the
finite horizon model to fit the movement duration. For
each iteration we recorded the next movement state
(10ms away from the initial state), and used that as the ini-
tial state for the next iteration. This process was repeated
until the cursor was within the distance of 0.4 cm from the
target position, and remained there without overshooting
for 600ms.
Simulating differently skewed velocity profiles within

the framework of receding-horizon control is non-trivial.
As a result, we chose to only model one, the baseline, ex-
perimental condition, where the activation cost R is con-
stant within the movement. Therefore, we chose the costs

QðtÞ

¼ f 0; for t 6¼ Th

~vpð~pðtÞ � ~ppðtÞÞ21v vjj~vðtÞjj21v f jj~f ðtÞjj2; for t ¼ Th
;

(10)

where ~vp ¼ ½5;5�; v v ¼ 0:05, and v f = 5. and the activa-
tion cost R=0.000003. The values were selected so that
the movement durations, produced by the receding-ho-
rizon model would match the experimental durations for
the baseline condition. However, the resultant velocity
profiles of this model more closely resembled those of
the early-peak velocity condition, than those of the
baseline. To account for any effects of the velocity pro-
file we also fit the costs so the model prediction of
movement durations matched the durations of the early-
peak velocity condition. For this simulation we selected
~vp ¼ ½0:7; 0:7�; v v ¼ 0:007, and v f = 0.7, while the acti-
vation cost remained unchanged.
In this model we introduced the simulated perturbation

by shifting the target position by 2 cm at 120ms after the
y-coordinate of the movement passed the perturbation
onset location. We only simulated the perturbations
matching our experimental conditions, lateral 2 cm cursor
jumps, with the onset at five evenly distributed forward
distances. We calculated simulated feedback intensities
the same way as for the classical and time-to-target
models.

Infinite horizon OFC
We implemented the infinite horizon OFC to control our

simulated hand based on the previous work of Qian et al.
(2013). Specifically, we calculated the control gain matrix
L, and Kalman gain matrix K to control the same system
as in the previous models. We chose the state-dependent
costs ~vp ¼ ½1; 1�; v v ¼ 0:02, and v f = 0 for the baseline
condition simulation, and ~vp ¼ ½0:35;0:35�; v v ¼ 0:007,
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and v f = 0 for the early-peak condition simulation. For
both conditions, the activation cost R=0.002 was kept
the same. The protocol of simulating the mean trajecto-
ries, feedback responses and their intensities was other-
wise identical to the receding horizon simulations.

Model comparison
We compared the simulated feedback intensities from

each of the models with the experimental feedback re-
sponses intensities to evaluate our models. We do not
evaluate models in terms of kinematics or any other varia-
bles. As the predictive simulated feedback intensities for
each of the four models provided very different patterns,
the important comparison is qualitative. However, we
supplemented this qualitative comparison with a quantita-
tive model comparison using the Bayesian information
criterion (BIC). BIC is a conventional method for model
comparison which evaluates the log-likelihood of the
model fitting to the data while controlling for over-fitting
by penalizing additional model parameters (Schwarz,
1978). A BIC difference of 10 is very strong evidence for
the model with the lower BIC. Overall, we used individual
participant mean feedback intensities for baseline, early-
peak hand velocity and late-peak hand velocity condi-
tions, providing us with a total of 150 data points (10
participants� three conditions� five perturbations) to de-
termine the fit. Moreover, to compare the captured var-
iance of the data between our OFC models and the time-
to-target tuning curve we also calculated the sum of
squared-residuals (SSRs) between the models and the
data.

Results
Experimental results
In this study, we examine the relation between time-to-

target (the time difference between the perturbation onset
and the cursor intercepting the target) and the visuomotor
feedback responses. To do so, we devised an experiment
consisting of five different kinematic conditions. The
baseline condition required movements with a natural,
bell-shaped velocity profile, while the velocity profiles
were modified for the four other conditions. In these four
conditions, we introduced a manipulation between the
hand velocity and the cursor velocity in the forward direc-
tion, such that the cursor and hand had different velocity
profiles, but their positions matched at the start and end
of the movement (Fig. 2). Two of these four conditions
(matched-cursor conditions) required different kinematics
of the physical movement to successfully complete the
task, but the cursor velocity profiles matched the base-
line. This manipulation of hand velocity profiles also re-
sulted in different times-to-target at the same distance in
the movement. The two other conditions (matched-hand
conditions) required the same hand movement as for the
baseline condition, but as a result the cursor moved with
different velocity profiles (see Materials and Methods). This
manipulation of the cursor velocity profiles separates the
relative contributions of physical and visual hand informa-
tion in regulating the feedback responses. For each condi-
tion we measured the visuomotor feedback intensities

(mean corrective force applied during the 180 to 230 ms
time window after a visual perturbation) at five different
locations in the movement (Fig. 3A). Overall, our paradigm
allowed us to modulate the times-to-target across condi-
tions, as well as separate proprioceptive (hand) and visual
(cursor) kinematics to examine their individual contribution
to visuomotor feedback responses.
Different movement conditions exhibited differences in

visuomotor feedback intensities (Fig. 3). Two-way re-
peated-measures ANOVA (both frequentist and Bayesian;
Materials and Methods) showed significant main effects
for both condition (F(4,36) = 10.807, p,0.001, and
BF10 ¼ 9:136� 1012), and perturbation location (F(4,36) =
33.928, p, 0.001, and BF10 ¼ 6:870� 109). Post hoc
analysis on movement conditions revealed significant dif-
ferences between baseline (gray line) and matched-cursor
late-peak hand velocity condition (blue line; t(9) = 4.262,
pbonf , 0.001 and BF10 = 247.868), and between baseline
and matched-cursor early-peak hand velocity condition
(green line; t(9) = –8.287, pbonf , 0.001 and BF10 = 1.425 �
108). However, no significant differences were found be-
tween the baseline and the two matched hand velocity
conditions (t(9) = 1.342, pbonf = 1.0 and BF10 = 0.357 for
early-peak cursor velocity, yellow; t(9) = 0.025, pbonf = 1.0
and BF10 = 0.154 for late-peak cursor velocity, purple).
Our results show that different kinematics of the hand
movement have a significant effect on visuomotor feed-
back response regulation, but that different kinematics of
the cursor movement do not.
One possible explanation for differences between the

two matched-cursor conditions (Fig. 3C, blue and green)
and the baseline condition (gray) might arise from a differ-
ent mapping between cursor and hand velocities (Fig. 2A)
that had to be learned. Alternatively, the incongruency be-
tween the vision and proprioception might be another ex-
planation. However, the two matched-hand conditions
(yellow and purple) had the identical mappings (and in-
congruencies) as the two matched-cursor conditions
(blue and green, respectively) and yet no differences were
found in these conditions. Instead, the only conditions in
which differences in the feedback gains were found, were
conditions in which the timing of the peak hand velocity
was shifted.
In order to test whether a simple relationship between

movement kinematics and visuomotor feedback inten-
sities exists, we mapped visuomotor feedback intensity
magnitudes as a linear function of the hand velocity and
the cursor velocity. For each experimental condition, we
find a different regression slope between the velocity and
the feedback intensities regardless of whether this is the
cursor or the hand velocity (Fig. 4A,B). Consistent with
our previous results, this difference in slopes is significant
for conditions where the hand, but not cursor, movement
was different (Fig. 4C,D). Although feedback intensities in-
crease with increasing velocity in both cursor and hand
coordinates, no one coordinate modality could predict the
changes in the feedback intensity.
To successfully complete each trial, participants were

required to reach the target. However, the distance to
reach the target is affected by the perturbation onset,
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later perturbation locations lead to larger correction an-
gles (Fig. 5A) and thus longer movement distances (Fig.
5B). That is, an earlier correction means that the trajectory
can go directly toward the target, whereas a later correc-
tion would require a new corrective movement and there-
fore further distance. This effect is clearly seen where the
extension of movement distance is enhanced for the per-
turbations closest to the target, with movement distance
extended by almost 0.5 cm compared with less than 1
mm for the closest perturbations. Any extension of the
movement distance requires an appropriate increase in
movement duration. Consequently, participants extended
their movement time, with longest durations for perturba-
tions close to the target (Fig. 6A). This increase in move-
ment duration increases the time-to-target for these late
perturbations (Fig. 6B), and now allows sufficient time for
the controller to issue any corrective commands.

Finite horizon OFC
As optimal control has been suggested to predict the

temporal evolution of feedback intensities (Liu and
Todorov, 2007; Dimitriou et al., 2013), we built two finite-
horizon OFC models: the classical model (Liu and
Todorov, 2007), and a time-to-target model. For the classi-
cal model we implemented an OFC (Todorov, 2005) to sim-
ulate movements with different velocity profiles, similar to
the experiments performed by our participants. We

extended this classical model to the time-to-target model,
by increasing the movement duration after each perturba-
tion onset according to experimental results (Fig. 6). For
both models we only simulated different hand kinematics
for computational ease and as our participants showed lit-
tle effect of cursor kinematics on their feedback intensities.
For both models we controlled the activation cost R to

simulate three conditions in which the location of the peak
velocity was shifted to match the experimental hand kine-
matics (Fig. 7A). Specifically, we solved for the activation
cost R and movement duration N by optimizing the log-
likelihood of our model’s peak velocity location and mag-
nitude using BADS (Acerbi and Ma, 2017). The optimized
movement durations (mean 6 SEM) were N=9306 0ms
for the baseline condition, N=10506 10ms for the late-
peak condition and N=11306 20ms for the early-peak
condition (10 optimization runs per condition). In compari-
son, experimental movement durations were N=9326
30ms for the baseline condition, N=10486 47ms for the
late-peak condition and 12016 59ms for the early-peak
condition, matching well with the OFC predictions. Overall,
this shows that specific constraints on the magnitude and
location of peak velocity that we imposed on our partici-
pants resulted in a modulation of reaching times that
matched OFC predictions under the same constraints.
For the classical model we estimated simulated feed-

back intensities by shifting the movement target at each
time point in the movement and measuring the mean

A B

C D

Figure 4. Visuomotor feedback intensities as a function of (A) hand velocity and (B) cursor velocity at the time of perturbation for all
experimental conditions. Error bars represent 1 SEM, and the arrowheads represent the order of the perturbation locations. C, D,
Regression slopes of feedback intensities for each condition as a function of hand and cursor velocities, respectively. Error bars
represent 95% confidence intervals of the slopes. The slopes for the two matched-cursor conditions were significantly different
(based on the confidence intervals) than for the baseline condition.
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magnitude of the simulated force response over a 130- to
180-ms time window in the direction of this shift. The si-
mulated feedback intensity profiles follow the same gen-
eral shape as in human participants, intensity increases
from the beginning of the movement and then falls off at
the end (Fig. 7B). However, the overall profile of these si-
mulated feedback intensities is very different for each of
the kinematic conditions. For the early-peak velocity con-
dition, the simulated feedback intensity peaks toward the
end of the movement (green line), whereas for the late-
peak velocity condition the simulated feedback intensity
profile peaks early in the movement (blue line). These si-
mulated feedback intensities do not appropriately capture

the modulation of visuomotor feedback intensities in our
experimental results. Specifically, they predict a temporal
shift in the peak intensity that is not present in our partici-
pants data, and predict similar peak levels of feedback in-
tensities across all three conditions. While the simulated
feedback intensities are qualitatively similar to the experi-
mental results within each condition; overall, this model
cannot appropriately capture the modulation of visuomo-
tor feedback responses across the conditions.
For the time-to-target OFC model, we extended the

classical model to account for the different movement du-
rations for each perturbation location (and movement
condition) that is seen in the experimental results. After a

A B

Figure 5. A, Mean hand movement trajectories for matched-cursor late-peak (left), matched-cursor early-peak (middle), and base-
line (right) conditions recorded in our participants, with perturbation onset at five locations [color light to dark: 4.2 cm (16.7%),
8.3 cm (33.3%), 12.5 cm (50%), 16.7 cm (66.7%), and 20.8 cm (83.4%) from the start position; dashed lines]. Corrections to right-
ward perturbations were flipped and combined with leftward corrections. B, Distance increase for each perturbation location re-
corded in our participants. Perturbation locations closest to the target required the largest increases in movement distance. Error
bars represent 1 SEM.

A B

Figure 6. A, Movement durations in maintained perturbation trials recorded by our participants in late-peak, early-peak and baseline
conditions. Separate bars within the same color block represent different perturbation onset locations (left to right: 4.2, 8.3, 12.5,
16.7, and 20.8 cm from the start position). Error bars represent 1 SEM while the horizontal dashed lines represent movement dura-
tions in the same movement condition for non-perturbed movements. B, Full bars represent times-to-target (time between a pertur-
bation onset and target interception) in maintained perturbation trials in our participants for late-peak, early-peak, and baseline
conditions. White bars represent the time-to-target for a respective non-perturbed movement, at the time when the perturbation
would have happened. The colored part of the bars represents the extension in times-to-target due to the perturbation in a non-con-
strained movement. This shows that the perturbation during the movement evokes an extension in the time-to-target and subse-
quently in movement duration Each of the five bars represents a different perturbation onset location, as in A. Error bars represent 1
SEM.

Research Article: New Research 10 of 17

March/April 2020, 7(2) ENEURO.0514-19.2020 eNeuro.org



perturbation, the remaining time-to-target was adjusted
to match the experimentally recorded times-to-target for
this specific movement, while before the perturbation
both the classical model and the time-to-target model
were identical. After adjusting for the individual durations
of each perturbation condition we are now able to qualita-
tively replicate the general regulation of feedback intensity
profiles for different kinematics using OFC (Fig. 7C). In the
late-velocity peak condition we predict a general increase
in the feedback responses throughout the movement
compared with the baseline condition, whereas in the
early velocity peak condition we predict a general de-
crease in these feedback responses compared with the
baseline condition. Thus, we show that within the OFC the
time-to-target is critical for the regulation of feedback re-
sponses, and when we take this into account, we are able
to replicate the feedback intensity modulation of our
participants.
While in our experiment we manipulated the time-to-

target through skewing the velocity profiles, time-to-tar-
get is naturally modified through changing the peak veloc-
ity. Therefore, we can further analyze the effect of the
time-to-target by calculating the feedback intensities for
movements with different peak velocities (Fig. 8A). The si-
mulated feedback intensities vary widely across peak ve-
locities, with a shift of peak feedback intensities toward
the earlier locations for faster movements (Fig. 8B).
However, when these distinct simulated feedback inten-
sity profiles are re-mapped as a function of time-to-target,
the simulated feedback intensities follow a consistent, al-
beit non-monotonic, relationship (Fig. 8C). This relation-
ship is also consistent over a range of peak velocities
across all three kinematic conditions and is well described
by a combination of a square-hyperbolic and logistic
function (Fig. 8D). The squared-hyperbolic arises from the
physics of the system: the lateral force necessary to bring
a point mass to a target is proportional to 1=t2 (Materials
and Methods; Eq. 9). The logistic function simply provides
a good fit to the data. Overall, our models show that the

feedback intensity profiles under OFC are independent of
the peak velocity or movement duration. Instead, our sim-
ulations suggest that time-to-target is a key variable in
regulating visuomotor feedback responses.
It has been shown that the optimal controller gains (Liu

and Todorov, 2007), as well as the visuomotor feedback
intensities (Knill et al., 2011; de Brouwer et al., 2017) are
influenced by task definition (e.g., instruction to hit the tar-
get or stop at the target). Here, we simulated the hit, fast
hit and stop instructions for our classical model to test
how it influenced the relation between simulated feed-
back intensity and time-to-target. Our previous simula-
tions represent the stop instruction. We modified the v v

and v f to simulate the baseline equivalent of hit and fast
hit instructions. Specifically, we set v v;hit ¼ v v=4 ¼ 0:05;
v f;hit ¼ v f=4 ¼ 0:005 for hit instruction, and v v;fasthit ¼
v v=10 ¼ 0:02; v f;fasthit ¼ v f=10 ¼ 0:002 for fast hit in-
struction. As changing the terminal costs also results in a
change in peak velocity, we further reduced the desired
movement times to N=800ms for the hit instruction and
N=750ms for fast hit instruction, such that all three peak
velocities match (Fig. 9A). According to our simulations,
such modification of task demands produced different si-
mulated feedback intensity profiles (Fig. 9B). However,
the intensity relationship with time-to-target maintained
the same structural profile independent of the task de-
mand (Fig. 9C). Specifically, both the squared-hyperbolic
and logistic segments of the control are still present,
although we observe the shift in the temporal location of
the crossover point. While each task requires a different
pattern of feedback gains (and will therefore produce dif-
ferent responses), variations of the kinematic require-
ments within a task do not change these gains and
therefore do not require recalculation.

Receding horizon and infinite horizon control
A limitation of the finite-horizon implementation used in

classical and time-to-target models is that the variable
movement duration (Fig. 6) is the model input rather than

A B C D

Figure 7. Comparison of feedback intensities between the two OFC models and experimental data. Simulated velocity profiles (A) and
simulated feedback intensity profiles (B) of baseline (black), early-peak (green), and late-peak (blue) velocity condition simulations for
the classical OFC model. Velocity profiles were obtained by constraining the velocity peak location and magnitude and optimizing for
movement duration and activation cost function. Simulated feedback intensity profiles were obtained by applying virtual target jumps
perpendicular to the movement direction during these movements and calculating the force exerted by the controller in the direction
of the target jumps. The jagged appearance of the intensity traces is simply an outcome due to the simulation time step. C, Simulated
feedback intensities obtained via the time-to-target OFC model. Preperturbation movements were simulated as if no perturbation
would occur, to keep the controller naive to an upcoming perturbation. At the perturbation onset the remaining movement duration is
adjusted to match the mean time-to-target for a similar perturbation onset in human participants (Fig. 6B). Therefore, this model only
simulates the feedback intensities at the five perturbation locations in the movement. The velocity profiles for the time-to-target model
match the velocity profiles of the classical model, shown in A. D, Visuomotor feedback intensities recorded in human participants.
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output. Therefore, in addition to finite-horizon models we
also modeled our task in receding and infinite horizon for
a single movement condition. Specifically, for the infinite
horizon model both state-dependent and regulator costs
were kept constant throughout the simulated movement.
For the receding horizon model, the regulator cost was
kept constant, while the state-dependent cost was zero
for all but last “foreseeable” state. Such models were ex-
pected to simulate the baseline experimental condition,
however the resultant velocity profile better resembled
the early-peak condition (Fig. 10A). As a result, we com-
pared these simulations with both baseline and early-
peak velocity condition data and with the time-to-target
model simulations (Fig. 10B–D).
Both receding horizon and infinite horizon LQG models

were able to successfully capture the nonlinear change in
trial durations for different perturbation onsets (Fig. 10B)
matching the experimental results. In addition, these
models also predicted variable times-to-target for the five
perturbation onset locations: 700, 660, 620, 600, and

580ms for the infinite horizon and 690, 640, 610, 610, and
600ms for the receding horizon. However, neither model
showed variation of the simulated feedback intensities for
different perturbation onset locations (Fig. 10C,D), a result
that was present in the experimental data and captured
by our time-to-target model. Instead both models pre-
dicted constant feedback intensities for all perturbations
locations. Therefore, neither the receding nor the infinite
horizon models are able to explain our experimental
results. While both of the approaches can accurately cap-
ture the variability in movement duration, only the time-to-
target model well describes the behavioral variation in vi-
suomotor feedback responses.

Quantitative model comparison
Qualitatively, our results suggest that the time-to-target

is an important variable when correcting for visual pertur-
bations in a visuomotor task. In order to supplement
these findings quantitatively, we also evaluated model fits

A B

C D

Figure 8. OFC simulations of (A) velocity profiles and (B) simulated feedback intensity profiles for different desired peak velocities (in order
from light to dark line colors: 40, 50, 60, 70, and 80cm/s). C, Simulated feedback intensities of (B) re-mapped as a function of time-to-tar-
get at the time of perturbation. D, Simulated feedback intensities vs time-to-target for the three kinematic conditions over the five peak ve-
locities simulated by OFC (colored dots). Solid lines represent the tuning curves (Eq. 7) fit to the data. Both the tuning curves and the
simulated feedback intensity profiles are similar across a variety of different kinematics when expressed as a function of time-to-target.

A B C

Figure 9. Comparisons between hit and stop instructions. A, Velocity profiles for the stop, hit and fast-hit conditions. B, Simulated
feedback intensity profiles as a function of hand position. C, Simulated feedback intensities of (B) re-mapped as a function of time-
to-target at the time of target perturbation.
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between the data and the models using BIC and calculat-
ing the SSR for each of the models. We compared the
OFC-based models with respect to the classical, finite ho-
rizon OFC model as our baseline model. Consistent with
our qualitative estimations, the time-to-target OFC model
performed the best of all OFC-based models (D BICttt =
38.2). In addition, both receding-horizon and infinite-hori-
zon models provided bad fits to the data (DBICrec ¼
�23:4;DBICinf ¼ �18:4). We also compared, using SSR,
the fit of our OFC models with the simpler time-to-target
tuning curve (Eq. 7; Fig. 11A). While the tuning curve is only
a simple approximation to the time-to-target adjusted OFC
feedback predictions, it is still able to explain a similar amount
of variance in the data (R2 = 0.33; SSRtuningcurve ¼ 28:5;
SSRclassical ¼ 33:3;SSRttt ¼ 24:9;SSRinf ¼ SSRrec ¼ 38:9).
Overall, both the BIC and SSR comparison confirms that the
time-to-target OFC model best explains the feedback modu-
lation during human reaching and suggests that time-to-tar-
get is a critical variable in online control.
Overall, our simulations suggest that, independent of

movement kinematics (different temporal position, velocity,
and acceleration profiles), the visuomotor feedback inten-
sities follow the same profile with respect to the time-to-tar-
get. We further verified how our time-to-target prediction
matches our actual experimental results by plotting partici-
pants’ visuomotor feedback intensities against the average
time-to-target for the respective perturbation locations and
movement conditions (Fig. 11A). Specifically, the intensities
monotonically increase with decreasing time-to-target until
the peak (following the squared-hyperbolic function) and
then reduce (the logistic function range).

Validation of the time-to-target model
We also compared the prediction of the time-to-target

model to independent results from an external data set
(Dimitriou et al., 2013). In the article, the authors could not
rigorously encapsulate both conditions within a simple re-
lationship to movement distance, movement fraction or
movement velocity. We plotted visuomotor feedback in-
tensities against time-to-target for two experimental

conditions: goal directed reach of 17.5 cm and of 25 cm
(Fig. 11B,C). Two observations can be made from these
results. First, the time-to-target model prediction and the
experimental data follow the same qualitative features, in-
dependent of the target distance (experimental condition).
Second, the feedback intensities for both conditions are
well explained by a single relationship with time-to-target
(Fig. 11C; R2 = 0.56, SSRtuning curve = 2.3). Thus, the vali-
dation against an external dataset supports our results
that visuomotor feedback intensities vary with the time-
to-target.
Finally, we evaluated our optimal control models (the

classical and the time-to-target) on this dataset. Similar to
our original fitting, we fit both of our OFC models to match
the kinematics of the human participants, and then simu-
lated the virtual experiment to extract simulated feed-
back intensities for the models. We found that model
parameters ~vp ¼ ½0:5;1�; v v ¼ 0:03, and v f = 0.03 and
R(t) = 0.00000235 provide the best fit of kinematics be-
tween OFC models and data. As with our data, the
time-to-target OFC model provided a better fit of the si-
mulated feedback gains than the classical OFC model
(DBIC=19.2, SSRttt = 8.6, SSRclassical = 10.7). Together,
both our data and Dimitriou et al. (2013) data strongly
support our time-to-target model.

Discussion
Here, we examined how movement kinematics regulate

visuomotor feedback responses. Participants extended
their movement duration after perturbations to successfully
reach the target. In addition, visuomotor feedback re-
sponses were modulated when the hand followed different
kinematics, but not when the cursor followed different kine-
matics. In order to better understand this modulation we
built four normative models using OFC: a classical finite-ho-
rizon OFC (Liu and Todorov, 2007), a finite-horizon time-to-
target adjusted OFC, a receding-horizon OFC (Guigon et
al., 2019), and an infinite-horizon OFC (Qian et al., 2013).
While the classical, receding and infinite horizon models
failed to predict the experimental visuomotor feedback

A B C D

Figure 10. Receding horizon and infinite horizon model simulations. A, Simulated velocity profiles of receding horizon (dashed) and
infinite horizon (dot-dashed) models. Both models naturally produce positively skewed velocity profiles, more closely resembling
early-peak velocity, rather than the baseline condition. B, Mean experimental movement durations (bar chart) compared with the re-
ceding and infinite horizon model predictions. Both models accurately simulate the variations in the reach durations with perturba-
tion location. Baseline (C) and early-peak velocity condition (D) simulations for receding horizon, infinite horizon and time-to-target
(dot-solid lines) models, compared with the experimental data. Only the time-to-target model predicts different visuomotor feedback
response intensities for different perturbation onset locations, while receding and infinite horizon models predict constant inten-
sities. Note that models were not fit to match the intensities, only to qualitatively demonstrate the behavior.
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response intensities, the time-to-target model qualitatively
replicated the visuomotor feedback intensity profile of our
participants. Overall, OFC models suggested that feed-
back intensities for each perturbation location depended
on the time-to-target (i.e., time between perturbation onset
and target interception) rather than distance or velocity.
Moreover, this explains why any mismatch between visual
and haptic kinematics had no effect on the feedback inten-
sities, as these manipulations did not affect the time-to-tar-
get. Simulated feedback intensities under all movements
followed the same profile with respect to time-to-target,
suggesting a critical role in the regulation of visuomotor
feedback responses.
Experimentally, our participants exhibited a temporal

evolution of visuomotor feedback intensities for each con-
dition, confirming the findings of Dimitriou et al. (2013). In
addition, we also showed the regulation of visuomotor
feedback responses across conditions, allowing us to in-
vestigate the underlying mechanism of this temporal evolu-
tion. Specifically, our experimental results demonstrated
strong regulation of visuomotor feedback intensity profiles
with different hand kinematics, but not with different cursor
kinematics (Fig. 3C). Compared with the baseline condi-
tion, in the matched-cursor early-peak velocity condition
participants produced longer times-to-target at each per-
turbation location (Fig. 6B), resulting in weaker feedback
responses based on the relationship between time-to-tar-
get and visuomotor feedback intensities (Fig. 11A). The op-
posite is true for the matched-cursor late-peak velocity
condition. As the two matched-hand conditions produced
similar times-to-target as the baseline due to similar hand
kinematics, we did not observe a different regulation in
feedback responses. Therefore, the condition-dependent
visuomotor feedback response modulation exhibited by
our participants meshes nicely with a control policy where-
by the time-to-target regulates the feedback responses.
It has long been suggested that we select movements

that minimize the noise or endpoint variability (Harris and
Wolpert, 1998). Within the framework of optimal control,
this idea has been expanded to the corrective movements,
that is, optimality in reaching movements is achieved in

part by minimizing the noise during any corrective re-
sponse (Todorov and Jordan, 2002). As motor noise scales
proportionally to muscle activation (Jones et al., 2002;
Hamilton et al., 2004), one way of minimizing such noise is
reducing the peak levels of muscle activation during the
correction. Mathematically, the optimal solution to correct
any perturbation approximates a constant activation, re-
sulting in a constant force for the whole duration between
perturbation onset and target interception. Such a solution
assumes that the brain is capable of estimating the remain-
ing duration of the movement (McIntyre et al., 2001;
Benguigui et al., 2003; Zago et al., 2004) and that the force
follows the squared-hyperbolic relationship to this duration
(Eq. 9). The parallel can be drawn here between our results
and the results of Oostwoud Wijdenes et al. (2011), where
the authors showed a similar temporal evolution of peak
acceleration against the time-to-target in a single forward
velocity condition. Our results further show that time-to-
target strongly modulates visuomotor feedback responses
across a range of different kinematics, consistent with the
idea that human participants aim to behave optimally.
More specifically, we suggest that, among different opti-
mality variables, the temporal evolution of visuomotor feed-
back response intensities serves to reduce effects of
system noise.
Finite-horizon OFC predicts a time beyond which feed-

back responses are suppressed. Beyond this critical time,
a logistic function well describes the relation between
time-to-target and feedback responses, with response in-
tensities reducing as the time-to-target decreases. The
controller gains at this stage are the most sensitive to ac-
celeration, suggesting a more “behavioral” outcome, the
controller is trying to stop, rather than correct errors. The
neural recordings in rhesus macaque monkeys’ supple-
mentary motor area and M1 (Russo et al., 2019) show that
supplementary motor area can signal movement termina-
tion as far as 500ms before the end of the movement. This
further suggests that there may be multiple stages within a
movement, where our control system might “care” more
about error correction in one or movement termination in
another. On the other hand, the suppression of responses

A B C

Figure 11. Validation of the time-to-target model. A, Experimental visuomotor feedback intensities for all five experimental condi-
tions (scatter plot) overlaid with the time-to-target tuning curve. The data and the tuning curve show similar qualitative features.
Error bars represent 1 SEM. Marker colors indicate five experimental conditions as described in Figure 2B. B, Experimental data of
the visuomotor feedback intensities of Dimitriou et al. (2013), mapped against the time-to-target. Black and orange traces represent
mean participant data for 17.5 and 25 cm movement conditions, respectively. C, A scatter plot of individual subjects’ data from B,
overlaid by the time-to-target tuning curve. Both, 17.5 and 25 cm movement conditions are combined to a single representation.
Different colors represent different perturbation onset distances as in Dimitriou et al. (2013).
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close to the target leads to undershooting the target. Our
participants, however, had to bring the cursor to the tar-
get to advance to the next trial. As a result, they extended
the movement durations postperturbation to return to the
squared-hyperbolic range of control. The control perform-
ance of such behavior is well accounted for by our time-
to-target model. Moreover, our time-to-target model also
well explained the modulation of visuomotor feedback in-
tensities from an external data set (Dimitriou et al., 2013).
However, an important distinction from our study is that in
Dimitriou et al. (2013), the suppression of feedback re-
sponses toward the end of movements would not inter-
fere with reaching the target as perturbation trials were
always in a mechanical channel so that no corrections
were required. As a result, the times-to-target were short-
er and the data clearly exhibits both logistic and squared-
hyperbolic segments of the control.
All of the variations of optimal control models are formu-

lated as two controllers in x- and y-axes (coupled through
control-dependent noise), with no modeling of the muscu-
loskeletal dynamics. However, the experiments were per-
formed using multijoint reaching movements of the arm.
One possibility is that the presence of these musculoskel-
etal dynamics in the human participants could explain the
differences in the feedback intensities, as the matched cur-
sor conditions required different hand accelerations. One
might therefore imagine that the condition with the fastest
initial movements (early-peak velocity) requires the largest
initial forces and could therefore produce larger initial feed-
back intensities as a default. However, several studies have
shown that there is no scaling of visuomotor feedback
gains with background loads or muscle activity (Franklin et
al., 2012, 2017). More critically, this condition actually
shows the lowest feedback gains early in the movement,
whereas the condition with the slowest initial acceleration
produces the highest feedback gains. Therefore, we sug-
gest that the neuromuscular dynamics cannot explain the
modulation of these feedback responses.
Both of the matched cursor conditions (early and late

peak) require a change in the physical kinematics away
from the naturally occurring bell-shaped velocity profile.
One possibility is that this manipulation could have driven
the changes in feedback intensity. We argue against this
possibility for two reasons. First, all participants were able
to fairly quickly learn this pattern of movement with train-
ing before the testing of the feedback intensities. Second,
if this manipulation away from the naturally occurring bell-
shaped profile affects these feedback intensities, we
would expect the feedback gains in these two conditions
to either both increase or both decrease. Instead we find
that the feedback intensity profile for each condition
changes in a manner that is explained by the change in
the time-to-target.
A limitation of our time-to-target model is that it takes

time-to-target as an input to generate feedback intensity
predictions, rather than obtain the time-to-target as a
model output. As a result, our time-to-target model does
not describe exactly how the change in movement geom-
etry after the perturbation influences this time-to-target,
which in turn regulates the visuomotor feedback

responses. On the other hand, both receding and infinite
horizon models did predict the movement duration
change after perturbations very well, but could not at all
describe the changes in visuomotor response intensity.
However, utility of movement has recently been used
within optimal control to characterize reaching move-
ments (Rigoux and Guigon, 2012; Shadmehr et al., 2016)
in which optimal movement time falls out automatically
from a trade-off between reward and effort. With respect
to our models, this adds additional complexities to cap-
turing the different movement conditions. Future ap-
proaches could attempt to model these results within the
utility of movement framework.
In addition, our time-to-target model does not directly

show the causality of the time-to-target as a control variable
for the visuomotor feedback intensities. Particularly, the
time-to-target relation to feedback intensity could be a by-
product of a more sophisticated control scheme. Additional
arguments for the time-to-target control scheme could be
two-fold. First, there is evidence that humans are well capa-
ble of estimating the time-to-target of a moving stimulus,
even if it is accelerating (McIntyre et al., 2001; Benguigui et
al., 2003; Zago et al., 2004), indicating that time-to-target is
at least an available input for such a controller. Second,
while we have tested finite-horizon OFC and two other (re-
ceding and infinite horizon) OFCs, only the finite horizon
controllers had any effect on the variation of simulated feed-
back intensities. Importantly, neither the receding nor infi-
nite horizon models use time-to-target as an input to the
controller. We posit that this time-to-target control input is
the one key difference between the finite and non-finite
models and is therefore the simplest explanation for our
results.
Our results show that models incorporating time-to-tar-

get (the time-to-target OFC and the simple time-to-target
tuning curve) better describe our experimental data and
those of Dimitriou et al. (2013) than do other optimal control
models. Specifically, the relative scaling of the conditions
is explained using the time-to-target tuning curve (Fig.
11A): the times-to-target are longer for the early-peak ve-
locity condition compared with the baseline, and therefore
fall in the lower intensity range (and vice versa for the late-
peak condition). However, there are still some qualitative
differences between the experimental and model predic-
tions. That is, our experimental results exhibited an in-
verted U-shape for the feedback intensity profiles, whereas
the model predicts only a slow increase in some conditions
(Fig. 8C, green curve). Our time-to-target model suggests
that this inverted U-shape is not characteristic of the feed-
back intensity profile, but is simply an outcome of the ex-
perimental design (particularly the reaching duration).
Indeed, the time-to-target model makes specific predic-
tions about the feedback intensities for much faster move-
ments, which should not show an inverted U-shape but
instead decrease throughout the movement. Our model,
therefore, makes strong predictions that can be tested in
future studies.
Rapid feedback responses scale with the temporal ur-

gency to correct for mechanical perturbations (Crevecoeur
et al., 2013). Here, we have shown that visuomotor feedback
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responses also follow a similar regulation, suggesting that
these two systems share the same underlying control policy.
Our work further extends this finding of Crevecoeur et al.
(2013) by not just showing that temporal urgency affects
feedback responses, but explaining the manner in which
these responses are regulated with respect to urgency.
That is, here, we have shown that for visual perturbations
the feedback intensities scale with a squared-hyperbolic of
the time-to-target, which is a direct measure of urgency.
Moreover, the feedback intensities were rapidly adjusted
due to the change in urgency as the task changed.
Specifically, when the cursor jumps close to the target, the
expected time-to-target is prolonged, and therefore the
optimal visuomotor feedback response needs to be ad-
justed appropriately to this increase in time. Our results
show that participants produce a visuomotor response
consistent with the actual, postperturbation, time-to-tar-
get, as opposed to the expected time-to-target before the
perturbation. Therefore, our results not only suggest that
similar computations might occur for both stretch and vi-
suomotor feedback response regulation, but also that this
regulation originates from task-related OFC.
Our proposed time-to-target model is not meant to con-

tradict the conventional OFC models, but rather show that
the OFC could be approximated by a simple time-to-target
control. Our work has shown that simulated feedback in-
tensities from OFC exhibit the same underlying pattern as
a function of time-to-target over a wide range of movement
kinematics, matching well the feedback intensities of our
human participants (Fig. 7). As expected, changes in the
task goals (e.g., hit vs stop) changed the relation between
feedback responses and time-to-target. However, the
qualitative features, the squared-hyperbolic and logistic
function, remained consistent across these tasks. These
results suggest that, for a specific task and known dynam-
ics, we do not need to recalculate the feedback gains
before each movement, but instead can access the appro-
priate pattern as a function of the estimated time-to-target
in each movement. Therefore, gain computation in reach-
ing movements may not be a computationally expensive
process, but instead could be part of an evolutionary con-
trol strategy that allows for rapid estimation of the appro-
priate feedback gains. Moreover, the fact that both stretch
reflex and visuomotor feedback systems exhibit similar
control policies despite different sensory inputs, perhaps
only sharing the final output pathway, suggests that this
simple feedback pathway may be an evolutionary old sys-
tem. Indeed, several studies have suggested that visuomo-
tor feedback is controlled via a pathway through the
colliculus (Corneil et al., 2004; Reynolds and Day, 2012; Gu
et al., 2019). Furthermore, it has been suggested that vi-
suomotor feedback responses involve two different phases
that are behaviorally different Cross et al. (2019). This
might reflect two different pathways, the early through the
colliculus and the later through cortex. The nature of our
analysis only focuses on the earlier of the two phases,
which shows limited sensitivity to environment, but is still
sensitive to goal redundancy. We suggest that this limited
sensitivity could be the outcome of the time-to-target
model in action, providing simplified, yet still flexible control

in the early phase of the visuomotor response. Such a sys-
tem would then only need to be adapted as the dynamics
or overall task goals change, allowing for fine tuning of the
feedback gains according to changes in the environment
(Franklin et al., 2017).
Our results have shown the connection between the vi-

suomotor feedback response regulation and the time left
to complete the movement. Specifically, in our human
participants we recorded the increase in the time-to-tar-
get after the perturbation onset, which consequently in-
creased the movement durations (Fig. 6). This increase
was also longer for later perturbations, consistent with
previous studies (Liu and Todorov, 2007). According to
our normative time-to-target OFC model, the time-to-tar-
get alone is enough to successfully regulate visuomotor
feedback responses as observed in humans. This result
was independent of the physical kinematics of the move-
ment or the onset times of the perturbations. This sug-
gests that there is no recalculation of a control scheme for
the rest of the movement after the perturbation, but rather
a shift to a different state within the same control scheme.
Such findings are consistent with the idea that visuomotor
feedback gains are precomputed before the movement,
allowing for faster than voluntary reaction times (Franklin,
2016). Moreover, through our results, we gain a deeper in-
sight into how OFC governs these feedback gains,
through a straightforward relationship to the estimated
time-to-target, based on physics.
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