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Abstract—Objective: Muscle path modeling is more than5
just routing a cable that visually represents the muscle, but6
rather it defines how moment arms vary with different joint7
configurations. The muscle moment arm is the factor that8
translates muscle force into joint moment, and this property9
has an impact on the accuracy of musculoskeletal simu-10
lations. However, it is not easy to calibrate muscle paths11
based on a desired moment arm, because each path is con-12
figured by various parameters while the relations between13
moment arm and both the parameters and joint configura-14
tion are complicated. Methods: We tackle this challenge in15
the simple fashion of optimization, but with an emphasis16
on the gradient; when specified in its analytical form, op-17
timization speed and accuracy are improved. Results: We18
explain in detail how to differentiate the enormous cost19
function and how our optimization is configured, then we20
demonstrate the performance of this method by fast and21
accurate replication of muscle paths from a state-of-the-art22
shoulder–arm model. Conclusion and Significance: As long23
as the muscle is represented as a cable wrapping around24
obstacles, our method overcomes difficulties in path cali-25
bration, both for developing generic models and for cus-26
tomizing subject-specific models. This allows efficient en-27
hancement of simulation accuracy for applications such as28
rehabilitation planning, surgical outcome prediction, and29
athletic performance analysis.30
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I. INTRODUCTION 34

IN MUSCULOSKELETAL modeling, the geometry of a 35

muscle is often represented by a series of straight and curved 36

cables, namely the muscle path. It is defined by the locations 37

of the origin, via, and insertion points as well as the size(s), 38

location(s), and orientation(s) of the obstacle(s) around which 39

the cables wrap [1], [2], [3], [4]. Although such a path is a 40

geometrical simplification of the muscle, which alters properties 41

related to the 3-D architecture, it can still have similar muscle 42

length–joint angle and moment arm–joint angle relations to its 43

anatomical reference, provided the path is well configured [5], 44

[6], [7], [8]. These two relations are crucial to simulation accu- 45

racy since muscle length is a major variable in the contraction 46

dynamics [9], [10], [11], [12], [13] and moment arm directly 47

determines the kinetic capacity of a muscle [14], [15], [16]. 48

The calibration of a muscle path is not only a fundamental step 49

for the development of a generic musculoskeletal model, but also 50

necessary in subject-specific applications [17], [18], [19], [20], 51

[21]. Scaling of skeletal geometry, for example, is a common 52

practice of model individualization, where the sizes and shapes 53

of the subject’s segments may be replicated in the model based 54

on anthropometric measurements or inverse kinematics [2], 55

[22]. However, such a scaled model is not yet subject-specific, 56

because the individual characteristics of muscle length and 57

moment arm are only reflected in musculoskeletal geometry, 58

which is different from skeletal geometry [2], [12]. In fact, the 59

scaling of skeletal geometry might distort the biomechanical 60

characteristics which were calibrated to be generically correct. 61

For example, depending on how the path of the triceps surae is 62

defined, enlarging the tibia might result in the Achilles tendon 63

moment arm being increased, unchanged, or even decreased. 64

Thus, for a subject-specific model, a rework of path calibration 65

is necessary after scaling to reflect the individual characteristics 66

of muscle length and moment arm, or at least assure that they 67

remain similar to those in the generic model. 68

Muscle path calibration is performed based on experimental 69

data such as geometric coordinates from medical images [17], 70

[18], [19], [23] or moment arm measurements [6], [24], and 71

this process can be laborious. To begin with, there is a large 72
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number of path-related parameters to be tuned. Each muscle73

path is defined by at least six parameters, including the two 3-D74

coordinates of the origin and insertion points. In addition, there75

will be three extra parameters for each via point and many more76

when obstacles are included to recreate the anatomical feature of77

muscle geometry [5], [18]. For example, in the prevalent open-78

source modeling platform OpenSim [22], cylinders are often79

used as obstacles to prevent the muscles from penetrating into80

the joints [7], [24], [25], where the cylinder size, orientation, and81

location would respectively need one, two, and three parameters82

to define. In general, monoarticular muscles require between six83

to 12 parameters, whereas complicated multiarticular muscles84

may require up to 30 parameters [18].85

The size of parameters is not necessarily a big challenge when86

one knows which to tune. However, if an objective function is too87

complex, the sensitivity to each parameter is often unclear [21].88

Hence, manual tuning tends to be puzzling: e.g., enlarging the89

obstacle or shifting it away from the center of rotation might in-90

crease the corresponding moment arm, but the effect may differ91

when the joint configuration changes. Even with optimization,92

the tuning process is not labor-free, if weighting factors are93

involved and need to be tested repeatedly due to the absence94

of any knowledge regarding the sensitivity.95

The second challenge in muscle path calibration lies in the96

high dimensional relation between moment arm and joint con-97

figuration. Each muscle, even monoarticular ones, can actuate98

multiple degrees of freedom (DoF), and each DoF corresponds to99

one moment arm [26], [27], [28]. For instance, the gastrocnemius100

is a biarticular muscle crossing the knee and ankle, which can101

be considered to contain at least three DoFs (ankle plantar-102

/dorsiflexion, ankle eversion/inversion, knee extension/flexion).103

Therefore, besides the well-studied Achilles tendon moment arm104

in the sagittal plane [29], [30], [31], it has an extra ankle moment105

arm [32], [33] and a moment arm about the knee [26], [34]. With106

all DoFs considered, path calibration involves matching multiple107

moment arm–joint angle relations altogether, and it is common108

to run into trouble where the calibration of one moment arm can109

distort others that are previously calibrated.110

There is more to this challenge than only the high dimensional111

relation, because each moment arm is also affected by all actuat-112

ing DoFs of the muscle [32], [35], [36]. Suppose the knee moves113

while the ankle is immobilized, in theory the Achilles tendon114

ankle moment arm might still change despite no ankle motion.115

With this, the moment arm–joint angle relation is no longer116

depictable by a curve or a surface, but rather requires a hypersur-117

face to demonstrate. For example, the soleus has two moment118

arms around the ankle, and trying to calibrate them is similar to119

matching two pairs of surfaces (imagine two heatmaps), which120

is difficult but viable. However, for the gastrocnemius, each of121

its three moment arms is dependent on three DoFs, which means122

that depicting the relation of each moment arm with the DoFs123

is similar to plotting a volumetric heatmap in 3-D space. In this124

case, the task of calibration becomes matching the color for125

three pairs of 3-D heatmaps. While difficult to imagine, manual126

calibration is theoretically still possible if they are somehow127

matched slice by slice, where each slice is a 2-D heatmap. But128

with one more moment arm, e.g. for the rectus femoris or many129

of the shoulder muscles, the number of dimensions to be matched 130

is beyond three, forcing manual tuning to be simplified and 131

compromising the overall model accuracy. 132

In light of these challenges, it takes extensive effort to develop 133

musculoskeletal models to simulate many different motions or 134

to individualize them for each subject. This difficulty hinders 135

the advancement and application of musculoskeletal modeling 136

and simulation. Therefore, here we develop a gradient-based 137

method for automated muscle path calibration. Our goal is to 138

tune path-related parameters so that the moment arm–joint angle 139

relation of a model matches with the target specification. An 140

optimization framework is established for a classic muscle path 141

wrapping method [1] and the gradient for the cost function is 142

derived in its analytical form to increase optimization speed and 143

accuracy. The concept employed in the gradient derivation is 144

universal and may be applied to the model calibration of many 145

other complex systems. 146

II. METHODS 147

A. Optimization Method 148

The process of parameter tuning for a muscle path is formu- 149

lated as a least-squares problem with the cost function 150

J(ppp) =

N∑
n=1

∥∥rrrtarget(qqqn)− rrrmodel(qqqn, ppp)
∥∥
2

2 → min, (1)

whereppp denotes muscle path parameters, andrrr(qqq) is the moment 151

arm at joint configuration qqq. Note that rrr and qqq are vectors with 152

the dimension of DoF number, whereas N is the number of 153

joint configurations. The target value and the model output are 154

indicated by the subscripts, but to make the notations concise, 155

the model output will also be abbreviated as rrr(qqq,ppp), rrr(•, ppp), or 156

rrr. 157

In this study, we limited the obstacle type to cylinder to 158

simplify the discussion, but the same principle applies to other 159

types such as sphere and sphere-capped cylinder described in [1]. 160

Currently, our optimization method requires the composition 161

of each muscle path to be decided in advance, which is based 162

on three fundamental segment types: straight (no obstacle), 163

single-cylinder, and double-cylinder. A path can be constructed 164

as an individual segment or a combination of multiple different 165

segments, e.g., 166

pppsingle︷ ︸︸ ︷
origin—via︸ ︷︷ ︸

pppstraight

—cylinder— via—cylinder—cylinder—insertion︸ ︷︷ ︸
pppdouble

,

and the composition of ppp is correspondingly based on three 167

fundamental forms: 168

1) pppstraight: (juuuP,
juuuS) 169

2) pppsingle: (juuuP,
juuuS, R, juuuC, α, β) 170

3) pppdouble: (juuuP,
juuuS, R1,

juuuC1
, α1, β1, R2,

juuuC2
, α2, β2) 171

where juuuP,
juuuS ∈ R3 are the coordinates of the anchor points 172

of a path segment expressed in their reference frames, written 173

as column vectors; e.g., juuuP = [jxP
jyP

jzP]
T. The radius of 174

a cylinder is denoted by R ∈ R+ and the center by juuuC ∈ R3, 175

whereas the orientation is defined by two Euler anglesα, β ∈ R. 176
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Fig. 1. Workflows of the original and revised obstacle-set methods. Left: the original form with one conditional statement. Middle: the revised form
with an extra conditional statement for continuity. Right: the smooth form revised for optimization. The naming and order of the anchor and wrapping
points in the single-cylinder case are indicated by the illustration in the bottom.

In the following discussion, the start and end anchor points of177

a path segment are denoted as P and S respectively, and when178

wrapped by the cylinder (whose center is denoted as C), the two179

wrapping points are denoted as Q and T (Fig. 1 ). Also, the180

frame in which coordinates are expressed are indicated by the181

superscript: withw for the world frame, c for the cylinder frame,182

and j for one of the joint frames; see Appendix A (supplementary183

material) for coordinate transformation.184

A muscle path is configured by ppp using the obstacle-set185

method [1], which computes the potential wrapping points on186

the obstacle(s) by finding the minimum-distance path between187

the two anchor points in each segment. To reduce computational188

load, we first took a geometric approach to compute rrr, which is189

based on the principle of virtual work and is algorithmically190

efficient by computing the velocity terms using the Kane’s191

method [37], [38], [39]. Then, since the typical algorithms192

solving (1) (e.g., Levenberg-Marquardt or trust-region) require193

the gradient ∂J/∂ppp, and by the chain rule194

∂J

∂ppp
=

∂J

∂rrr

∂rrr

∂ppp
=

N∑
n=1

(
2
(
rrr(qqqn, ppp)− rrrtarget(qqqn)

))∂rrr

∂ppp
, (2)

we need to specify ∂rrr/∂qqq in its analytical form.195

Notice for a path composed of I segments, its length (l) is196

the sum of the lengths of all segments, and the same applies to197

its moment arm (∂l/∂qqq). This means (2) can be decomposed as198

individual computations for each path segment with199

rrr(•, ppp) =
I∑

i=1

rrri(•, pppi),

∂rrr

∂ppp
=

I∑
i=1

∂rrri
∂ppp

=

I∑
i=1

(
∂rrri
∂pppi

∂pppi
∂ppp

)
, (3)

where the i-th segment is configured by pppi, either in the form 200

of pppstraight, pppsingle, or pppdouble. Therefore, essentially our goal is to 201

specify∂rrri/∂pppi, and knowing that the case of any multi-segment 202

path can be broken down to an individual segment, our following 203

discussion of moment arm focuses on the path segment and we 204

drop the subscript i for convenience. 205

Direct derivation of ∂rrr/∂ppp is overwhelming considering its 206

structural complexity. It would require a tremendous amount 207

of effort, and the eventual result would be filled with pages 208

of repeated terms and computationally inefficient. Thus, we 209

circumvented this problem by disassembling it into a composite 210

of multiple gradients whose analytical forms are easy to derive. 211

For instance, moment arm can be computed given the anchor 212

and wrapping points (as in rrr(uuu)), and by the chain rule 213

∂rrr

∂ppp
=

∂rrr

∂uuu

∂uuu

∂ppp
, (4)

whereuuu(ppp) is obtained with the obstacle-set method. As we will 214

show later, rrr(uuu) is relatively simple in structure, so ∂rrr/∂uuu is 215

not difficult to derive, and our remaining goal is to compute 216

∂uuu/∂ppp. However, uuu(ppp) is still complex and contains indifferen- 217

tiable components, so we began with revising the obstacle-set 218

method into a smooth form, such that ∂uuu/∂ppp exists for all ppp. 219

This is accomplished by replacing the conditional statements 220

in the obstacle-set method as well as other nondifferentiable 221

components with soft functions which yield almost the same 222

outputs but are continuously differentiable (Fig. 1). 223
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B. Soft Functions224

Fig. 1 (middle) shows the detailed workflow of the revised225

obstacle-set method, containing two conditional statements. The226

first statement checks if either of the anchor points is inside227

the cylinder. Note that this was not included in the original228

method by [1] (Fig. 1, left), and we introduced it to simplify the229

optimization since it removes complex geometric constraints be-230

tween the anchor points and the obstacle. The second statement231

checks if the wrapping angle exceeds 180◦, which is considered232

invalid wrapping. Naturally, conditional statements makerrr(•, ppp)233

nondifferentiable in certain domains, and we introduced soft234

functions to patch them (Fig. 1, right).235

Step 1.5 essentially keeps a minimum distance of R be-236

tween the point and the cylindrical axis (e.g., ‖cuuuP,xy‖2 =237 √
cxP

2 + cyP2) to prevent Step 2 from returning Inf or NaN. In238

our case, if for example P locates inside the cylinder, it is shifted239

onto the surface along the radial direction as P′ (Fig. 1, middle),240

and the coordinates become241

cuuuP′,xy =
R

‖cuuuP,xy‖2
cuuuP,xy. (5)

More specifically,242

cuuuP̃,xy =

{
cuuuP,xy, ‖cuuuP,xy‖2 > R
cuuuP′,xy, ‖cuuuP,xy‖2 ≤ R

, (6)

and the coordinates of such transitional point P̃ may be calcu-243

lated using a soft version of Heaviside step function:244

cuuuP̃,xy = cuuuP′,xy +
(
cuuuP,xy − cuuuP′,xy

)
fsoftStep(dP), (7)

where dP = cxP
2 + cyP

2 −R2, and245

fsoftStep(x) =
1

e−2x + 1
≈
{
1, x > 0

0, x < 0
; (8)

the input can be magnified to steepen the transition around 0.246

Now, the conditional statement of (6) is smoothed: P̃ remain as247

P if dP > 0, otherwise it approaches the shifted point P′ when248

dP tends to 0in the negative direction.249

With cuuuP̃ and cuuuS̃, Step 2 finds the appropriate points of250

tangency Q and T on the cylinder (cuuuQ and cuuuT; see (S11) and251

(S13) in Appendix C) (supplementary material). Then based on252

the sign of253

s = cxQ
cyT − cxT

cyQ, (9)

Step 3 returns either the coordinates of the two wrapping points254

or null if wrapping is invalid (Fig. 1, left). The latter situation can255

be problematic as it leads to yet another conditional statement in256

moment arm computation, in which different formulas are used257

depending on whether the wrapping occurs:258

straight: rrr =
(
jPωωωP̃ − jSωωωS̃

)T wuuuS̃ − wuuuP̃

‖wuuuS̃ − wuuuP̃‖2
, (10)

wrapped: rrr =
(
jPωωωP̃ − jCωωωQ

)T wuuuQ − wuuuP̃

‖wuuuQ − wuuuP̃‖2

+
(
jCωωωT − jSωωωS̃

)T wuuuS̃ − wuuuT

‖wuuuS̃ − wuuuT‖2 , (11)

where ωωω is obtained using (S2) in Appendix A (supplementary 259

material). 260

Here, the revision of Step 3 into a smooth form involves a 261

transition from (10) to (11) when s changes from positive to 262

negative, and the complication arises with the involvement of 263

joint frames: P, S, and C could be fixed on separate bones; i.e., 264

the implication of jP, jS, and jC may be different. This makes it 265

hard to cancel out the terms in (11) to transition into (10). To this 266

end, we have Q and T respectively approaching S and P when 267

s tends to 0in the negative direction (Fig. 1, right), and similarly 268

this can be achieved with (8): 269

cuuuQ̃ = cuuuS̃ +
(
cuuuQ − cuuuS̃

)
fsoftStep(s),

cuuuT̃ = cuuuP̃ +
(
cuuuT − cuuuP̃

)
fsoftStep(s). (12)

This way, moment arm computation is generalized as 270

rrr =
(
jPωωωP̃ − jCωωωQ̃

)T wuuuQ̃ − wuuuP̃

‖wuuuQ̃ − wuuuP̃‖2

+
(
jCωωωT̃ − jSωωωS̃

)T wuuuS̃ − wuuuT̃

‖wuuuS̃ − wuuuT̃‖2
. (13)

When s > 0, Q̃ and T̃ maintain their original coordinates as 271

wrapping points Q and T (cuuuQ̃ ≈ cuuuQ and cuuuT̃ ≈ cuuuT), and 272

moment arm is computed with (11). When s < 0, cuuuQ̃ ≈ cuuuS̃ 273

and cuuuT̃ ≈ cuuuP̃, and (13) simplifies into (10). Importantly, this 274

generalization accommodates the wrapping and moment arm 275

computation involving two obstacles. 276

Furthermore, Step 2 involves the calculation of the 2-norm 277

(also in (5) and (13)) and the 2-argument arctangent (see S13 278

in Appendix C) (supplementary material). Both are nondiffer- 279

entiable at the origin, and we replaced them with 280

fsoftNorm(xxx) =

√
‖xxx‖22 + a−√

a, (14)

and 281

fsoftAtan2(y, x) = 2 tan−1
(γ
2

)

γ

2
=

⎧⎪⎪⎨
⎪⎪⎩

−b√
x2+b2+x

, −b < y < 0 and x < 0
b√

x2+b2+x
, 0 ≤ y < b and x < 0

y√
x2+y2+x

, otherwise
, (15)

where a and b should be sufficiently small positive numbers 282

(e.g., eps and 0.001 respectively). 283

In such a manner, we have modified a branched workflow 284

into a smooth form that is differentiable across the entire do- 285

main of its input parameters. This modification is verified using 286

kinematic measurements to ensure that its difference with the 287

non-smooth form is small enough across a large range of motion 288

(see Appendix B) (supplementary material). 289

With (8), the obstacle-set method (i.e., the computation of 290

uuu(ppp)) is revised into a smooth form, and since (8), (14), and (15) 291

are clearly all differentiable, it is now possible to compute the 292

gradient ∂uuu/∂ppp. As shown in (4), our target function rrr(•, ppp) is a 293

composite ofuuu(ppp) and the generalized moment arm computation 294

rrr(•,uuu) with (13). However at this stage, ∂rrr/∂ppp is still difficult 295

to compute due to the knotty structure of ∂uuu/∂ppp, so we continue 296
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down the chain; see Appendix C (supplementary material) for297

the mathematical derivation in detail.298

C. Calibration and Validation299

With the gradient ∂rrr/∂ppp specified, we used the nonlinear300

least-squares solver (lsqnonlin) in MATLAB to solve (1).301

The computation of this cost function requires a musculoskeletal302

model and the input of some kinematic dataset qqq for the model303

output, and the correspondent moment arm data at qqq are required304

as the target value. Ideally, qqq should cover joint configurations305

as diverse as possible for accurate calibration.306

For the model output, we used a 12-DoF 42-muscle human307

shoulder–arm model [40] (with muscle path from [18]; see308

all DoFs and muscle paths in Appendix D) (supplementary309

material), and the kinematic measurements of the shoulder and310

arm from 10 intransitive daily tasks performed by a single subject311

in [41]. The kinematics from five tasks (gesturing an OK sign,312

pumping fists, blocking out light from the face, saluting, and313

pointing) were input to the reference model to generate artificial314

calibration data, while qqq from another five tasks (gesturing a315

thumb-down, signaling for hitchhike, greeting, gesturing to stop,316

and gesturing for silence) were used for validation.317

For the target value, we utilized the same model as reference318

to generate artificial moment arm data; that is, (1) becomes319

J(ppp) =

N∑
n=1

∥∥rrrmodelGP(qqqn, pppref)− rrrmodelGP+(qqqn, ppp)
∥∥
2

2 → min,

(16)
where rrrmodelGP is computed based on the slightly revised320

obstacle-set method by [1] (Fig. 1, middle) with pppref from [18],321

while rrrmodelGP+ is based on our smoothed form (Fig. 1, right).322

Thus in a sense, this process is equivalent to replicating the323

muscle path geometry in the reference model. The input ofqqq was324

interpolated from the aforementioned kinematic measurements.325

This is because the original dataset consists of joint configura-326

tions from a massive number of time instants (1000-Hz sampling327

rate), many configurations are similar and hence redundant as328

input for producing the target value. For calibration, to avoid329

an underdetermined system, the number of joint configurations330

equals to the number of path parameters that each muscle has331

(Supplementary Table II); e.g., an 18-parameter path will be332

calibrated based on the kinematics in a total of 18 instants333

from five movements (N as 18in (16)). For validation, five334

instants were extracted from each movement, that is 25 joint335

configurations in total.336

With the model output and target value in place, we set337

out to demonstrate the performance of our method through a338

comparison test as well as the implementation of muscle path339

calibration. In the test, the solver was configured to run with and340

without the gradient specified analytically, and we compared the341

optimization results for some representative muscle paths. In342

order to take algorithmic features into account, the comparison343

between gradients was repeated for two lsqnonlin algo-344

rithms. In the implementation, the solver was tasked to calibrate345

the moment arms of all 42 muscle paths, and we manipulated346

the input using four variants representing progressive levels347

of application complexity. The input variants were generated348

based on a 2×2 design: original/modified parameter structure 349

× noise-free/noisy calibration data. For both the test and the 350

implementation, optimization was performed on a 2.9-GHz Intel 351

Core i9 with 64GB RAM and 14 CPU cores using parallel 352

computing (parfor): The processor was not overclocked, and 353

the number of parallel workers was set as 14. We structured 354

parallel computing to optimize 14 initial points simultaneously 355

for a single muscle path within eachparfor loop. Other details 356

are described as follows. 357

The comparison test aims to evaluate the contribution of 358

gradient specification as well as to determine an appropri- 359

ate configuration for the implementation. First, we tested the 360

levenberg-marquardt algorithm on two single cylinder– 361

based (serratus anterior, superior and middle parts) and two dou- 362

ble cylinder–based muscle paths (latissimus dorsi, thoracic and 363

iliac parts), each with 70 sets of initial points. Thelevenberg- 364

marquardt algorithm is relatively simple in that it has only one 365

type of search direction [42], [43], and the optimization process 366

should generally be similar when the analytical and numerical 367

gradients differ only by numerical error. So with this test, we 368

may also verify if our computation of the analytical gradient is 369

correct. The initial points for each path—including locations 370

(mm), radius (mm) and Euler angles (rad)—were randomly 371

generated usingrand in five ranges (from [−1, 1] to [−104, 104] 372

with an increment of magnitude in between) and optimized 373

without any constraints for our method to be verified across a 374

vast domain. Then, we tested trust-region-reflective, 375

which is the default algorithm forlsqnonlin and more robust. 376

Optimization was performed with two additional complex paths 377

(extensors carpi radialis brevis and ulnaris), each with 84 sets 378

of initial points. They were also randomly generated but were 379

bounded with slight anatomical constraints—the same initial- 380

ization that will be explained later for the implementation. For 381

both tests, FunctionTolerance, OptimalityToler- 382

ance, and StepTolerance were configured as 2.5× 10−16 383

with MaxIterations as 103 and MaxFunctionEvalua- 384

tions as 105, and the numerical gradient was computed using 385

MATLAB’s built-in forward-difference method. 386

Based on the preliminary results, the implementation of cali- 387

brating 42 muscle paths was configured as follows: 388
� trust-region-reflective (gradient-specified); 389
� 10−4 for StepTolerance, and 2.5× 10−16 for Func- 390

tionTolerance and OptimalityTolerance; 391
� 102 for MaxIterations and Inf for MaxFunc- 392

tionEvaluations, 393

and the initial points were generated with the subsequent con- 394

siderations. 395

As previously mentioned, each muscle path requires prede- 396

termination of the number of via points and cylinders for the 397

structure of ppp. Some muscle paths are modeled with via points 398

and more than two obstacles (Supplementary Table II), and their 399

structures of ppp will be a combination of the three typical forms. 400

For example, the extensor carpi radialis longus is modeled in the 401

form of 402

pppsingle︷ ︸︸ ︷ pppsingle︷ ︸︸ ︷
origin—via︸ ︷︷ ︸

pppstraight

—cylinder— via—via︸ ︷︷ ︸
pppstraight

—cylinder— via—insertion︸ ︷︷ ︸
pppstraight

,
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which contains a total of 30 path parameters. To test the robust-403

ness of our method against parameter structure, we considered404

two scenarios. First, we set the structure of path parameters to405

the same as in the reference model. This is mostly the case406

of subject-specific modeling, where the parameter structure is407

known in the generic model and calibration is performed to408

adjust parameter values. In the second scenario, all muscle paths409

were configured with either one or two cylinders and without410

any via points, resulting in a different parameter structure from411

their reference counterpart (Supplementary Table II) and ap-412

proximately 10% fewer parameters in total (ppp and pppref in (16)413

may differ in dimension). In other words, with at most two414

obstacles to wrap around, this path needs to imitate the geometry415

of the original path, potentially configured by multiple points and416

obstacles. This is similar to the case of generic modeling, where417

often one obstacle per joint is placed regardless of how complex418

the muscle geometry might be.419

Apart from the predetermination of parameter structure, We420

bounded the joint-frame coordinates of the origin and insertion421

points (not all anchor points) within a uniformly distributed422

range of ±30 mm from the respective original values in the423

reference model—in both initialization and optimization. This424

is not a prerequisite, but since the origin and insertion points425

attach to anatomical landmarks with accurate measurements,426

we included this constraint to speed up the calibration. Also,427

when generating the initial points, the joint-frame coordinates of428

cylinder center(s) were randomly initialized around the sections429

of the line between the initial origin and insertion points. This430

also accelerates the process, since if a cylinder is not wrapped431

at the beginning of the optimization, ∂rrr/∂juuuC remains a null432

matrix, and juuuC might be left untuned till the end. For efficiency,433

we ensured that the cylinders are not too departed from the initial434

muscle paths.435

To reduce the risk of local minimum, the optimization was436

globally iterated with multiple randomly generated initial points.437

For each path, the number of initial points is 14 times the number438

of parameters (Supplementary Table II); e.g., a 12-parameter439

path will be calibrated with at most 168 sets of different initial440

values. Additionally, to realize a trade-off between speed and441

accuracy, we programmed the calibration to first iterate over 42442

initial points (i.e., three parfor loops), and if the cost (16) per443

moment arm per joint configuration does not reach a sufficiently444

small level k (e.g., 0.01), another 42 will be iterated. The rest445

of initial points will only be iterated when the normalized cost446

fails to reach 100k after the first 84 global iterations, and the447

calibration stops whenever 100k is reached or when all initial448

points run out. If none of the global iterations reaches the desired449

threshold, 14 sets of initial points that led to the lowest costs450

but had the solver exit due to the iteration limit will be further451

optimized with MaxIterations as 103.452

Optimization performance is also influenced by the calibra-453

tion data, thus to examine the robustness of our method against454

error, the calibration was also performed with noisy data. For455

this, the aforementioned artificial moment arm data were added456

to with a sum of relative error (uniformly distributed within457

±20% of the reference value) and absolute error (uniformly458

distributed within ±2 mm). This leads to a total of four conditions459

for the implementation (original/modified parameter structure 460

× noise-free/noisy calibration data), and each was simulated 461

five times with different sets of initial points to evaluate the 462

performance in terms of calibration speed and validation ac- 463

curacy. Note that the five sets of initial points were kept the 464

same for both noise-free and noisy conditions, and stopping 465

criteria remained unchanged for all conditions; otherwise, the 466

difference in results might also be attributed to initialization and 467

configuration. 468

The calibration results are validated by mean absolute error 469

εεεval =

∑25
n=1 |rrrmodelGP(qqqn, pppref)− rrrmodelGP(qqqn, pppopt)|

25
, (17)

where pppopt is the solution of (16). Here, notice the optimized 470

parameters are input into the non-smooth model rrrmodelGP de- 471

spite obtainment from the smooth form, making the evaluation 472

standard more strict. 473

III. RESULTS 474

We selected a few representative muscle paths to test the 475

optimization with two classiclsqnonlin algorithms as well as 476

to compare the performance with and without gradient specifica- 477

tion. Using the levenberg-marquardt algorithm, the op- 478

timization processes based on the analytical and numerical gra- 479

dients are generally the same, with costs descending in identical 480

fashions for most of the initial points (Fig. 2 and Supplementary 481

Figs. 3–5). Whereas with trust-region-reflective, the 482

cost descents much faster with gradient-specified optimization 483

(Fig. 3 and Supplementary Figs. 6–10): On average, by the 100th 484

or even the 10th iteration, the cost minimized based on the 485

analytical gradient is already lower than the final cost achieved 486

by the numerical gradient. 487

We also recorded the computation time and the number of 488

function counts (how many times the cost function is evaluated) 489

for each iteration. Fig. 4 shows the ratio of computation time 490

per iteration between the gradient-specified and unspecified op- 491

timizations, and as can be expected based on the computational 492

principle of the numerical gradient, this ratio is almost linear to 493

the number of parameters in the cost function. With this ratio, 494

we scaled the cost descent to the number of function counts in 495

Figs. 2 and 3, and Supplementary Figs. 3–10 to demonstrate 496

optimization performance with respect to computation load. 497

From this perspective, with levenberg-marquardt, even 498

if the cost reduction per iteration is almost the same between 499

the gradient-specified and unspecified optimizations, the former 500

requires fewer function evaluations and is hence more efficient. 501

As for the trust-region-reflective algorithm, the ad- 502

vantage achieved by the analytical gradient is further magnified 503

by this computational efficiency. 504

To demonstrate the performance of our method in the im- 505

plementation, we devised four conditions in which 42 muscle 506

paths are calibrated of their multi-dimensional moment arms, 507

and the results are summarized in Table I and visualized in 508

Fig 5 and Supplementary Figs. 11–13. In an ideal condition 509

where the parameters-to-optimize share the same structure with 510

their reference and the calibration data contain no noise, our 511
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Fig. 2. Cost–iteration curves for the optimization using the levenberg-marquardt algorithm (latissimus dorsi, iliac part). The results of each
initial point from the analytical (blue) and numerical (red) gradients are plotted respectively on the left and right. The mean±SD of the costs are
plotted in the middle, with function count–dependent curves in the corner. Each cost (mm2) is based on 8 moment arms × 18 joint configurations.

Fig. 3. Cost–iteration curves for the optimization using the trust-region-reflective algorithm (latissimus dorsi, iliac part). The results of
each initial point from the analytical (blue) and numerical (red) gradients are plotted respectively on the left and right. The mean±SD of the costs are
plotted in the middle, with function count–dependent curves in the corner. Each cost (mm2) is based on 8 moment arms × 18 joint configurations.

Fig. 4. Ratio of computation time per iteration (numerical vs. analyti-
cal) of six representative muscle paths. See Supplementary Table II for
abbreviations.

method completed the calibration task in 7.7 min with parallel512

computing. Across all 182 effective moment arms, the median513

validation error is 5× 10−5 mm and the max is 3.37mm for514

the palmarflexion/dorsiflexion moment arm of the flexor carpi 515

radialis. 516

When the input parameters are modified of their structures 517

(e.g., a path defined by two cylinders is now calibrated with only 518

one cylinder, or a path with multiple via points is now calibrated 519

without them), the calibration time is 10.9 min, and only one 520

moment arm contains error more than 5 mm in validation. When 521

the calibration data are noisy, the performance of our method is 522

reduced, which is not surprising since the introduced noise is 523

quite large (a sum of ±20% relative error and ±2 mm absolute 524

error). Nevertheless, its speed and accuracy are still satisfactory. 525

For example, in the case of the original parameter structure, 526

the calibration task was completed in 56.9 min with only one 527

moment arm containing validation error over 10 mm. 528

For a more intuitive understanding of our method’s working 529

process, we demonstrate in Figs. 6 and 7 two cases of muscle 530

path calibration, each with a featured complication. In Fig. 6, 531

the initial anchor points are both within the cylinder. This is a 532

situation that the original obstacle-set method cannot handle, and 533

we patched the issue by shifting such a point onto to the cylinder 534

surface to prevent a breakdown in wrapping point computation. 535

As soon as the optimization starts, they are gradually expelled 536

out of the cylinder to reduce the cost, achieving a smooth 537
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TABLE I
METHOD PERFORMANCE

Fig. 5. Absolute errors in 182 effective moment arms of 42 muscle paths in validation (original parameter structure and noise-free calibration
data). The magnitude of the error is indicated by the intensity of the color. The number in the horizontal axis corresponds to the parameter number
for each muscle path. See Appendix D (supplementary material) for nomenclatures in the axes.

transition from one branch to another within a conditional state-538

ment. Fig. 7 shows a typical path configured by two cylinders,539

and the misplacement of either cylinder will induce error in540

moment arm computation. Driven by the gradient, first the ori-541

entations of both cylinders are rotated to the correct directions,542

and then their radii are adjusted to the right sizes—all in tens of543

iterations.544

IV. DISCUSSION545

A key to optimization speed and accuracy is the gradient,546

which in our case is the gradient of the moment arm function with547

path-related parameters as variables. To derive it analytically, the548

cost function must be differentiable in the first place. For this,549

we revised the obstacle-set method for muscle path wrapping550

by substituting its conditional statements and nondifferentiable551

components with soft functions. Next, we disassembled the552

revised function into smaller modules that are easier to derive553

separately, and then assembled the gradients back into the de-554

sired gradient composite. The result is simplistic in form and thus555

easy to compute, which further increases optimization speed.556

Importantly, the concept of the chain rule is universal and may557

be useful for deriving the gradient of other complex functions558

as well.559

Specifying the gradient in its analytical form is more than a560

formal alternative to gradient approximation using the typical561

finite difference method. As we demonstrate in our preliminary562

tests, the performance of the gradient-specified optimization is563

distinct from that of the gradient-unspecified. This arises from564

how the analytical and numerical gradients are computed as565

well as how each optimization algorithm proceeds with different 566

gradients. For example, to estimate the gradient numerically with 567

the forward-difference method, consider 568

∂J(ppp)

∂ppp
≈
[
J(ppp+δe1)−J(ppp)

δ . . . J(ppp+δen)−J(ppp)
δ

]
, (18)

where ei is the standard basis vector with the i -th element 569

as 1 and 0s elsewhere, and δ is a sufficiently small positive 570

value. To approximate the gradient, the additional number of 571

function evaluations equals to the dimension of input parame- 572

ters; this number will double if a central-difference method is 573

used. In other words, the time complexity of (18) is O
(
dim(ppp)

)
574

[44], [45], [46]. However, if the analytical form is explicit, 575

the cost function only needs to be evaluated once, since most 576

terms for computing the gradient analytically are already ac- 577

cessible as part of the cost function evaluation; time com- 578

plexity being O(1). As shown in Fig. 4, the average compu- 579

tation time per iteration based on the numerical gradient is 580

approximately (dim(ppp)+1) times of that based on the analytical, 581

so the optimization is always much faster if the gradient is 582

specified. 583

As for how the optimization progresses each iteration, 584

the specifics depend on the algorithm. For instance, the 585

levenberg-marquardt algorithm has only one conditional 586

statement, in which a search direction–related factor is either 587

magnified or reduced based on if a step (i.e., an iteration) 588

succeeds in reducing the cost [43]. Consequently, the residual be- 589

tween the analytical and numerical gradients will not induce any 590

difference in the optimization, unless the accumulated numerical 591

error happens to diverge a step from success to failure. For 592
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Fig. 6. Featured case of path calibration for the serratus anterior (superior part). Left: the anchor points and the obstacle defined by pre- and
post-optimized parameters and the resultant wrapping points. Right: the reference path configuration and the optimization process from the initial
point to the solution. The yellow points on the red muscle path are the anchor points, while the wrapping points are in blue. The initial anchor points
are inside the cylinder, which would induce a computation breakdown in the original obstacle-set algorithm but is patched by our revision. As the
optimization progresses, the anchor points are gradually expelled from the cylinder, leading to a path configuration valid for the original algorithm.

most of the initial points we tested, the optimization process is593

identical between the analytical and numerical gradients (Fig. 2594

and Supplementary Figs. 3–5). This also verifies our derivation595

of the analytical gradient.596

With the trust-region-reflective algorithm, there is597

a much larger difference in the results between the gradient-598

specified and unspecified optimizations (Fig. 3 and Supplemen-599

tary Figs. 6–10). The reason is that this algorithm not only600

contains a conditional statement with three branches that could601

separate the optimization process, but these branches are unique602

in terms of determining the direction of a search step: When the603

Hessian of the cost function is positive definite, the Newton’s604

method is applicable for rapid local convergence (namely a605

step in the Newton direction), otherwise the solution must be606

approached globally either in the direction of the steepest descent607

or negative curvature [42], [43]. Since the Hessian is approxi-608

mated using quasi-Newton methods [42], if the gradient itself609

is already a numerical estimation, the Hessian approximation610

might not be positive definitive even if its exact value is. In611

this case, a Newton step is no longer possible, and neither of612

the alternatives converges as quickly—the optimization may613

even be diverted towards different outcomes. With the analytical614

gradient, however, the approximation is closer to the exact615

Hessian. Based on our observation so far, for every iteration, the616

Hessian approximated based on the analytical gradient maintains617

positive definite, indicating that Newton steps are likely taken618

throughout the optimization even with alternatives in trust-619

region-reflective, hence rapid local convergence is 620

ensured. Notably, the positive definiteness of the Hessian also 621

allows the application of conjugate gradient methods to obtain 622

each Newton step [42], avoiding the need for inverting the Hes- 623

sian using Gaussian elimination, which is computationally less 624

efficient. 625

To encapsulate, specifying the gradient in its analytical form 626

benefits the optimization in two ways: 627

1) efficient computation of every iteration, and 628

2) rapid local convergence (i.e., fewer iterations) in trust- 629

region methods. 630

These two advantages grant the gradient-specified optimization 631

much more cost descent per function count compared with the 632

unspecified, allowing the search from many more initial points 633

for the global solution. For instance, this rapidly convergent 634

iteration process can be utilized for selection and mutation in 635

genetic algorithm [46], [47], [48] and guarantees producing 636

the locally optimal child without generating a large population. 637

Also, to existing frameworks for automated path tuning [20], 638

[21], implementing gradient-specified optimization could fur- 639

ther enhance the performance. 640

With these advantages, the specification of gradient resolves 641

most difficulties for the optimization in practice, but not all 642

of them. Ideally, had the solver run for enough time with a 643

sufficiently large number of iterations, there is not much need 644

for any further conditions or constraints. However, expenditures 645

in computation and time are always a concern in reality, and 646
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Fig. 7. Featured case of path calibration for the latissimus dorsi (thoracic part). Left: the anchor points and the obstacles defined by pre- and
post-optimized parameters and the resultant wrapping points. Right: the reference path configuration and the optimization process from the initial
point to the solution. The yellow points on the red muscle path are the anchor points, while the wrapping points are in blue. The path is complicated
in that it wraps around two obstacles, both of which need to be correctly placed for moment arm calculation to be accurate. By the 11th iteration,
the cylinders are oriented to the correct directions, and their radii are adjusted correctly in another 30 iterations. The parameters related to cylinder
placement are optimized without constraints.

we may as well include some conditions as long as the required647

information is not more than we already have.648

To begin with, the type of obstacle as well as the number649

are predetermined in our method to define the vector structure650

of path parameters. It is of course possible to introduce a soft651

function that merges moment arm computation with different652

amount of various obstacles, so that the obstacle type and number653

can also be optimized. Yet we find it unnecessary at the current654

stage, since the cylinder is a more popular obstacle for muscle655

path modeling, and the obstacle number is closely related to the656

number of joints a muscle crosses.657

We also constrained the 3-D coordinates of the origin and658

insertion points to a range (±30 mm) around the reference values;659

imagine the volume of a standard Rubik’s Cube. This is not660

essential for our method, but it is also not necessary to spend time661

optimizing what is already quite clear. The origin and insertion662

are attached to anatomical landmarks, whose relative locations663

on the bones are well-studied. Especially if the goal is to calibrate664

upper-limb muscle path, even with individual variability taken665

into account, the origin and insertion points should not shift too666

much from our selected bounds. Other parameters, particularly667

those of the cylinders, were tuned without any constraint, so the668

major complication of obstacle placement is still being tackled669

without the knowledge of musculoskeletal geometry (Fig. 7).670

In fact, our modification of the obstacle-set method has already671

removed complex geometric constraints between the cylinder672

and the points, and the optimization may proceed from any initial673

point (Fig. 6).674

Last, there is the typical problem of local minimum, which675

cannot be avoided even with the optimization gradient and con-676

straints. For this, we adopted the common strategy of multiple677

initial points, and for each muscle, 84–420 different initial points 678

could be iterated in optimization. This does not eliminate the 679

risk of local minimum, but should avoid it as much as possible. 680

Again, it would be neat and tempting to hit the global minimum 681

with only one shot, but our approach is more practical with the 682

computational cost taken into account. 683

The performance of our method is demonstrated by replicat- 684

ing the muscle paths of a reference model in four conditions 685

(Table I). Here, note that we validated the optimized parameters 686

using non-smooth wrapping and moment arm computation, 687

meaning that these parameters are (sub-)optimal for the original 688

model as well. It is hence practical to implement our method 689

for other models: For example, with slight modifications to 690

accommodate other wrapping strategies (not necessary if the 691

outcome is similar), it is possible to build upon our method 692

a user-friendly program, which takes in any desired skeleton 693

model and moment arm–joint angle relations for path calibration 694

reproducible in OpenSim and other software. 695

Moreover, we need to reiterate that it is mainly the high 696

dimensional relation between moment arm and joint configu- 697

ration that makes muscle path calibration challenging, which 698

is often neglected. The moment arm in our reference model is 699

not a one-dimensional variable but a vector of 12 elements. For 700

instance, the pectoralis major crosses the shoulder complex and 701

actuates up to eight DoFs, and each of the accordant moment 702

arms varies with changes in any one of the eight DoFs, meaning 703

that their moment arm–joint angle relation is depicted in a 8-D 704

space. Calibrating the moment arms of the pectoralis major is 705

similar to matching eight pairs of 8-D hypersurfaces, and it 706

is almost impossible to accomplish manually unless four or 707

five moment arms are neglected. In spite of that, our method 708
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succeeds in calibrating most muscles with satisfactory speed709

and accuracy: e.g., the three parts of the pectoralis major were710

each calibrated in a few seconds, and the validation errors in711

their 24 moment arms are all negligible.712

One limitation of this study is that the performance of our713

method is demonstrated only with artificial data generated from714

a model. To eliminate the concern that our optimization perfor-715

mance mainly benefits from the same structure shared by the716

parameters in the reference model and those to be calibrated,717

we also tested the scenario where a simpler parameter structure718

is configured. As shown in Table I and Supplementary Fig. 11,719

though both calibration speed and validation accuracy decrease720

compared with when the original parameter structure is con-721

figured, the calibration time is only 10.9 min and the median722

validation error is 0.09 mm. In reality, the path of a muscle723

is geometrically far more complicated than a few points and724

wrapping obstacles, but our results show that the optimization725

could still succeed with a relatively simple parameter structure.726

We also tested conditions with noisy data, and our method is727

quite robust (Table I and Supplementary Figs. 12 and 13)728

against errors likely larger than expected in experimental mea-729

surements. Importantly, our method is conveniently compatible730

with experimental data, since the only mandatory input is the731

relationship between moment arms and joint angles, regard-732

less of how the data are obtained or whether the subject is733

human.734

Another expected concern could be that, due to current tech-735

nical limits, we usually do not have access to the measurements736

for all moment arms of a muscle, let alone their relations with737

all actuating DoFs. Yet this is not a problem related to our738

method but rather faced by all biomechanists. When lacking739

measurements, the moment arms will simply be assumed of740

certain values or relations, which is essentially what has been741

done in musculoskeletal modeling. Nevertheless, had such ad-742

vanced measurements been available, our method is in line to743

provide equally advanced calibration. In fact, even if the high744

dimensional moment arm–joint angle relation is not completely745

established, our method is already usefully applicable. For ex-746

ample, to calibrate the Achilles tendon plantarflexion moment747

arm for a subject-specific model, one may use ultrasound or748

MRI to perform the measurement at the neutral ankle position,749

and then linearly scale some generic moment arm relation [49],750

[50] to obtain rrrtarget(qqq) for our method. Or if one assumes some751

relation between moment arm and subject anthropometry, then752

they can also take moment arm values in the generic model as753

reference, scale them based on the assumed relation, and input754

in our method to generate a subject-specific model. In either755

case, the resultant muscle path will be much more accurate756

than when path parameters are directly scaled based on skeletal757

geometry.758

Given these limitations, we expect our method to be examined759

with more models and datasets. As aforementioned, a practical760

application of this method would be in subject-specific modeling761

to recalibrate muscle path after scaling, which will be demon-762

strated in our future work. We are currently utilizing this method763

to develop a lower-limb model based on experimental data,764

which should offer further validation aligned with the theoretics 765

in the current study. 766

It is also worth noticing that, apart from the key role in 767

muscle path calibration, our analytically derived gradient reveals 768

conclusively the sensitivity of moment arm to path-related pa- 769

rameters. The value of each element in the gradient denotes how 770

much influence each parameter has on moment arm in a certain 771

joint configuration, which could be of important reference in 772

medicine. For example, in the surgery repairing rotator cuff tears, 773

the positional error of tendon reattachment or graft insertion 774

would induce unwanted changes in moment arms, whose mag- 775

nitudes may be different depending on the direction of positional 776

shift. The information of sensitivity could help the surgeons or 777

manufacturers of medical devices to focus on limiting the error 778

in the direction with potentially larger moment arm variance, so 779

as not to compromise the biomechanical function of the operated 780

shoulder. 781

Finally, we recapitulate the universal practicality of the con- 782

cept we employed in the derivation of optimization gradients. 783

A complex function may be disassembled into a product of 784

simple modules for separate derivation, and the gradients of each 785

module not only can be reassembled into the desired gradient 786

composite, but may also be used as part of the gradient in 787

other cost functions. A good example would be ∂uuu/∂ppp in (4), 788

from which we conveniently derived the gradient for a path 789

coordinate–based cost function. This enables calibration with 790

medical imaging data (e.g., MRI) to expand the applicability. 791

Furthermore, it would be interesting if kinetic measurements 792

such as joint moment can be utilized in calibration, which 793

requires the optimization of musculotendon parameters. In a 794

previous study, we have analytically derived the requisite gra- 795

dient [12], and it can be integrated with this work, making 796

possible joint moment–based model calibration, which is key 797

to automated musculoskeletal modeling. 798

V. CONCLUSION 799

A gradient-based method is developed for automated muscle 800

path calibration, where path-related parameters are optimized to 801

minimize the error in muscle moment arm. This method features 802

specifying the gradient in its analytical form, which enables ef- 803

ficient computation and rapid convergence compared with using 804

the numerical gradient, and the performance is demonstrated by 805

fast and accurate replication of paths from a 12-DoF 42-muscle 806

human shoulder–arm model. 807

We explain the derivation in detail, which first requires to 808

smooth the cost function by replacing the conditional statements 809

and nondifferentiable components with soft functions, and then 810

modularize it into multiplicative factors that are easier to derive 811

separately. This concept applies to other cost functions as well, 812

and should be practical in the optimization of various properties 813

in musculoskeletal models as well as many other systems. In 814

the future, we seek to implement this method with experimental 815

data to develop new musculoskeletal models and integrate it 816

into modeling platforms to facilitate research and clinical appli- 817

cations. 818
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