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Abstract

Motor learning occurs through multiple mechanisms, including unsupervised, supervised (error based), and reinforcement
(reward based) learning. Although studies have shown that reward leads to an overall better motor adaptation, the specific proc-
esses by which reward influences adaptation are still unclear. Here, we examine how the presence of reward affects dual adap-
tation to novel dynamics and distinguish its influence on implicit and explicit learning. Participants adapted to two opposing
force fields in an adaptation/deadaptation/error-clamp paradigm, where five levels of reward (a score and a digital face) were
provided as participants reduced their lateral error. Both reward and control (no reward provided) groups simultaneously
adapted to both opposing force fields, exhibiting a similar final level of adaptation, which was primarily implicit. Triple-rate mod-
els fit to the adaptation process found higher learning rates in the fast and slow processes and a slightly increased fast retention
rate for the reward group. Whereas differences in the slow learning rate were only driven by implicit learning, the large differ-
ence in the fast learning rate was mainly explicit. Overall, we confirm previous work showing that reward increases learning
rates, extending this to dual-adaptation experiments and demonstrating that reward influences both implicit and explicit adapta-
tion. Specifically, we show that reward acts primarily explicitly on the fast learning rate and implicitly on the slow learning rates.

NEW & NOTEWORTHY Here we show that rewarding participants’ performance during dual force field adaptation primarily
affects the initial rate of learning and the early timescales of adaptation, with little effect on the final adaptation level. However,
reward affects both explicit and implicit components of adaptation. Whereas the learning rate of the slow process is increased
implicitly, the fast learning and retention rates are increased through both implicit components and the use of explicit strategies.

dual adaptation; explicit learning; force field adaptation; implicit learning; reward

INTRODUCTION

Humans continually adapt to both internal and environ-
mental changes to produce appropriate and accurate move-
ments. In this process called motor learning, humans form
motor memories consisting of internal models representing
the body and the environment. To maintain a high level of
motor performance, these internal models are continuously
updated, using current environment and body states to
adjust the next movement to reduce their movement error.
Therefore, this error-driven learning requires the use of

sensory prediction errors to update the next motor command.
Although motor learning is primarily error driven, additional
or alternative information can be used. For example, external
information, such as positive (reward) or negative (punish-
ment) reinforcers, can be triggered by the current movement.
In this case, humans would change their movement, or adapt,
tomaximize the overall task success (1).

This process, called reinforcement learning, has been
applied in motor adaptation and is important for under-
standing underlying processes of motor memory formation
(2–8). This method has been mainly used with a reward, or
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positive conditional reinforcer, defined as a stimulus admin-
istered to an organism after a correct or desired response
that increases the probability of occurrence of the response
(9). In general, the presence or absence of a reward is com-
pared to the expectation of such a reward to estimate the
reward prediction error, which drives changes in behavior. If
error feedback is present in the current state, the sensorimo-
tor control system would use sensory prediction errors and
reward prediction errors. On the other hand, in the absence
of error information, it would only rely on reward prediction
errors to estimate the correct or desired response. Recently it
has been suggested that rewards and punishments act at a
metalearning level, directly controlling the learning rates to
maximize the reward or minimize the punishment (10).
Although reinforcement learning has already been exten-
sively studied inmany fields, particularly in both psychology
and robotics, fewer studies have investigated its effects in
motor adaptation.

Most studies investigating reinforcement learning in motor
adaptation have shown that the presence of reward generally
leads to stronger motor learning (6, 11–13), although this
varies in terms of the effects. This variability in specific effects
likely arises because of the variability in both the type of
motor adaptation task (serial reaction time, visuomotor rota-
tion, or force field adaptation) and the type of reward pro-
vided (visual, monetary, or praise). For example, one study
has shown that reward increases both the learning and reten-
tion rates for stroke patients in force field adaptation (14).
However, another study that used visual reward during visuo-
motor rotation has argued that reward only increases the
learning rate, producing faster learning (13). In contrast, sev-
eral studies have suggested that reward mainly enhances ad-
aptation through a greater retention rate, for a range of tasks
including isometric tracking (15), sequence learning (16), and
visuomotor rotation in healthy subjects (17–20), cerebellar de-
generative patients (21), and stroke patients (22).

Studies on visuomotor rotation offer strong evidence that
visuomotor adaptation is driven primarily by explicit adap-
tation (23–31). Additionally, they revealed that reward plays
an important role in the use of these explicit strategies (32–
34). In their study, Codol and collaborators (32) demon-
strated that the use of explicit strategies in rewarded visuo-
motor adaptation enhances the retention of adaptation and
that the prevention of these aiming strategies reduces motor
adaptation. Similarly, Holland and collaborators (33) showed
that reward-based gradual adaptation to a visuomotor rota-
tion is mainly driven by an explicit component, which can
also prevent learning when the task becomes more complex,
here with the addition of a mental rotation task.

Only a few motor adaptation studies have examined the
effect of reward on the learning of novel dynamics, showing
its importance in forming and retaining motor memories
with a binary reward (35), with different monetary reward
probability distributions (36), or through performance-
scaled reward in stroke patients (14). Although there is
strong evidence that visuomotor adaptation is driven pri-
marily by explicit adaptation, recent studies have suggested
that force field adaptation is primarily implicit in nature (37,
38). Because of these different natures, one could imagine
that reward has different effects on each type of learning
task. Moreover, both force studies examining reward on

force field adaptation tested the adaptation to only one set of
dynamics at once. That is, they tested single adaptation to a
force field. However, in daily life, humans continuously
switch from one task to another, often requiring different in-
ternal models to deal with different external dynamics. Such
adaptation can be examined with a dual-adaptation para-
digm in which participants adapt simultaneously to two dif-
ferent dynamics, each signaled by a contextual cue.

When appropriate contextual cues are provided, humans
are able to select, recall, and adapt the respectivemodel mem-
ory for each task (38–46). Dual adaptation has been shown to
occur when the contextual cue is different in the physical or
visual hand state (42, 43), workspace visual location (43, 47),
bimanual or unimanual arm movements (40, 48), some body
postures (49), or for lead-in or follow-throughmovements (41,
50–52). In contrast, other cues such as color provide only a
weak or ineffective contextual cue for dual adaptation (43,
53), despite some studies showing a small effect (54–56).
These differences in the efficiency of color cues have recently
been explained by the use of explicit strategies when the task
is sufficiently simple (38). Specifically, they showed that dual
adaptation occurs implicitly when a direct contextual cue is
used (a contextual cue related to the physical or visual hand
state) (38). However, participants apply explicit strategies in
simple tasks when the contextual cues relate to more abstract
representations (indirect contextual cues), for example, a dif-
ference in background, target, or cursor color.

The differences in the effects of indirect and direct cues
on dual adaptation, and the presence of explicit and implicit
components during force field adaptation, raise critical ques-
tions about the effect of reward on motor adaptation, partic-
ularly within a force field dual-adaptation task. As found in
visuomotor rotation studies, we predict that reward strongly
influences explicit adaptation. Here, we examine whether
reward affects the adaptation to two opposing force fields
and to what degree any differences occur within the implicit
or explicit components of motor adaptation. To address
these questions, we designed a force field experiment includ-
ing visual rewards based on participants’ performance in a
reaching task. Five different types of rewards were scaled to
the participants’ lateral error such that the visual reward got
stronger as participants reduced their error. An adaptation/
deadaptation/error-clamp paradigm was used to facilitate
the interpretation in comparing the results to previous stud-
ies (45, 57). Here we propose that rewarding participants’
performance leads to greater dual adaptation, through better
retention and possibly faster learning. Additionally, we
investigate the possibility of this increase in adaptation aris-
ing through explicit components.

METHODS

Participants

A total of 28 (16 male, 12 female; mean age 31.1± 1.1 yr) force
field-naive participants, with no known neurological disor-
ders, participated in the experiment. All participants were
right-handed based on the Edinburgh handedness question-
naire (58) and provided written informed consent before par-
ticipation. The study was approved by the Ethics Committee
of theMedical Faculty of the Technical University of Munich.
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Apparatus

Seated in a custom adjustable chair and strapped with a
four-point seat belt to reduce body movement, partici-
pants grasped the end-point handle of a vBOT robotic
manipulandum (59), with their forearm supported against
gravity by an air sled. The vBOT system is a custom-built
robotic interface that can apply state-dependent forces on the
handle while recording the position and velocity in the planar
workspace, located �15 cm below the shoulder. A six-axis
force transducer (ATI Nano 25; ATI Industrial Automation)
measured the end-point forces applied by the participant on
the handle. Joint position sensors (58SA; Industrial Encoders
design) on the motor axes were used to calculate the position
of the vBOT handle. Position and force data were sampled at 1
kHz. Visual feedback to the participants was provided hori-
zontally from a computer monitor (Apple 30-in. Cinema HD
Display; Apple Computer, Cupertino, CA; response time: 16
ms; resolution: 2,560� 1,600) fixed above the plane of move-
ment and reflected via a mirror system that prevented visual
feedback of the participants’ arm. Constant visual feedback,
provided in the same plane as the movement, consisted of
circles indicating the start, target, and cursor positions on a
black background (Fig. 1A). Necessary auditory feedback was
provided by speakers. Specific visual and auditory feedback is
defined in Experimental Paradigm.

Experimental Setup

Participants made right-handed forward-reaching move-
ments from a start position (gray circle of 1.5-cm diameter)
located �20 cm directly in front of the participant to a target
(yellow circle of 1.5-cm diameter) located 20 cm away to the
front (Fig. 1A). A trial was initiated by the cursor entering the
start position. The go-cue was defined as the target appear-
ing after the cursor resided in the start position for a random
exponentially distributed time between 1 and 2 s. The move-
ment was considered complete when the participant main-
tained the cursor within the target for 600 ms. After each
trial, visual feedback regarding the success of the previous
trial was provided while the participant’s hand was passively
moved back to the start position by the robotic manipula-
ndum. Successful trials were defined as trials where partici-
pants hit the target without overshooting and where their
movement’s peak speed was between 37 and 53 cm/s. On
these trials, the participants received specific feedback,
defined below, depending on the group they belonged to. On
unsuccessful trials, messages of “too fast,” “too slow,” or
“overshoot”were provided when the peak speed exceeded 53
cm/s or did not reach 37 cm/s or when the cursor overshot
the target by>1 cm, respectively. An additional low tone was
played on these trials. If participants failed to leave the start
position within 1,000 ms after the target appearance, the

A B

C

D

Figure 1. Experimental setup and paradigm. A: different areas of the workspace were divided to provide different reward regions depending on the maxi-
mum lateral error (x-axis), which are indicated between S1 and S5. B: workspace layout of the experiment displaying the 4 different phases with their respec-
tive force fields and cues. In the adaptation phase, 2 force fields were applied [clockwise (CW) and counterclockwise (CCW)], where each force field was
always associated with 1 of the contextual cues (e.g., CW force field for the left visual workspace and CCW force field for the right visual workspace). In the
deadaptation phase, the association of the force fields to the visual cues was reversed (e.g., CCW force field for the left visual workspace and CW force field
for the right visual workspace). Participants always physically performed forward-reaching movements in the center of the workspace (black) while visual
feedback (targets and cursor) was presented at 1 of the 2 visual workspaces, which acted as a contextual cue: �10 cm offset (left workspace, pink) set as
cue 1 and þ 10 cm offset (right workspace, purple) set as cue 2. Pink and purple colors are only used here for illustration. C: temporal structure of the experi-
ment. An adaptation (medium gray)/deadaptation (dark gray)/error-clamp (light gray) paradigm was performed over a maximum of 1,632 trials. In the error-
clamp phase (light gray), the kinematic error is held at 0 to assess spontaneous recovery. The structure of pseudorandomized blocks of trials is displayed
for the preexposure (field and normal channel trials) and adaptation phase (field, normal channel, and instructed channel trials). Instructed trials were only
used during the adaptation and deadaptation phases. Additional “hidden reward” feedback phases are displayed, happening for the first half of the preex-
posure phase and all the error-clamp phase only. D: visual feedback and score grading. Reward participants experience different visual rewards scaled
from area S1 to area S5. A reward was composed of both an increase in points and the presentation of a digital face. Control participants were given a neu-
tral yellow circle with a centered “OK”when they reached the speed requirement and were not provided with any points.
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current trial was aborted and restarted. Short breaks were
enforced every 200 trials except for the first break, which
was set after 140 trials, to repeat specific instructions before
exposure to force fields. Movements were self paced, and
participants were also able to take a short break before start-
ing the next trial if desired. Participants were instructed to
produce one powerful reaching movement to the target as
soon as the target appeared (go-cue). During each move-
ment, the vBOT was either passive (null field) or produced a
clockwise (CW) or counterclockwise (CCW) velocity-depend-
ent curl force field or a mechanical channel (Fig. 1, B and C).
For the velocity-dependent curl field (53), the force at the
handle was given by

Fx

Fy

� �
¼ 0 �k

k 0

� �
_x
_y

� �
ð1Þ

where k was set to ±13 N·m�1·s, with the sign of k determin-
ing the force field direction (CW or CCW). On a channel trial,
the reaching movement was confined to a simulated me-
chanical channel with a stiffness of 6,000 N·m�1·s and
damping of 2 N·m�1·s acting lateral to the line from the start
to the target (60, 61). These “channel” trials were used to
measure the lateral force, produced by the participants on
the wall of this mechanical channel, that reflects their com-
pensation to the exposed force field. “Instructed channel”
trials were similar to channel trials but were preceded by the
audio message “Robot off” (38), informing participants that
the environmental disturbance was removed for this specific
trial only. These instructed trials allowed us to assess the
amount of implicit adaptation employed by participants (37,
38). Here, by defining the total amount of adaptation as the
summation between the explicit and implicit components,
we can calculate the amount of explicit strategies by taking
the difference between the total amount of adaptation and
the amount of implicit adaptation (62, 63).

Experimental Paradigm

All participants were required to adapt to an adaptation/
deadaptation/error-clamp, or A/B/error-clamp, paradigm
(57) within dual adaptation (45). In this paradigm, after a
preexposure phase containing 5 blocks of trials (each block
contained 34 trials), participants were simultaneously pre-
sented with two opposing force fields in an adaptation phase
(exposure to fields A) containing 28 blocks and a consecutive
deadaptation phase (exposure to reversed fields B) containing
between 2 and 10 blocks of trials depending on the partici-
pants’ performance, followed by a final error-clamp phase,
containing 5 blocks of trials (Fig. 1, B and C). To allow dual ad-
aptation, each of the two opposing force fields was linked
with an appropriate contextual cue: a shift in the workspace
visual location (38, 43) either to the left (�10 cm from the sag-
ittal axis; Fig. 1B, pink workspace) or to the right (þ 10 cm
from the sagittal axis; Fig. 1B, purple workspace) of the screen.
The physical hand location (proprioceptive location)
remained centered for both cues, without any shift from the
sagittal axis (Fig. 1B; black workspace). In the preexposure
phase, movements with both contextual cues occurred in
the null field. Within the adaptation phase, one contextual
cue (e.g., þ 10 cm visual shift) was associated with one force
field (e.g., CW) whereas the other contextual cue (e.g., �10 cm
visual shift) was associated with the other force field (e.g.,

CCW) (Fig. 1, B and C). In the deadaptation phase, the cue-
field association was reversed (e.g., CCW for the þ 10 cm vis-
ual shift and CW for the �10 cm visual shift) to drive deadap-
tation (Fig. 1, B and C). The length of the deadaptation phase
was dependent on each participant’s performance and could
vary between 2 and 10 blocks of trials (68–340 trials), as
detailed in Ref. 45. Specifically, the mean of force compensa-
tion over the last three blocks of trials was calculated online
for each contextual cue. Once the difference in mean of the
two contextual cues switched sign (became negative), which
would represent the force compensation of one cue crossing
the other, the phase was terminated and switched to the fol-
lowing error-clamp phase, after the current block of trials.
Finally, the error-clamp phase exclusively applied channel tri-
als regardless of the current cue. One block of trials was pseu-
dorandomly composed of 34 trials: 17 trials for each cue,
including 14 normal trials and 3 channel trials. During the ad-
aptation and deadaptation phase, 1 out of 3 channel trials was
replaced by an instructed channel trial (Fig. 1C), such that one
block of trials included 14 normal trials, 2 channel trials, and 1
instructed channel trial per cue. Whereas normal trials were
presented in a null, CW, or CCW force field depending on the
temporal phase, channel and instructed channel trials
remained error clamped.

Participants were separated into two groups and pre-
sented with either the reward condition or the control condi-
tion. In the reward group (8 male, 6 female; mean age
32.7± 1.6 yr), participants were presented with a reward for
each successful trial. Five different rewards, consisting of
five different scores and digital faces, were designed depend-
ing on the current trial’s kinematic error. These consisted of
a “neutral” (þ 1 point in score), “satisfied” (þ 2), “very satis-
fied” (þ 3), “happy” (þ4), or “very happy” (þ 5) digital face
(Fig. 1D). The face was continuously presented as a 6-cm-di-
ameter yellow circle on top of the screen (Fig. 1A), with its
face properties (eyes, mouth, cheeks) changing and transfer-
ring different “emotions” depending on the kinematic error.
Specifically, the maximum perpendicular error on each trial
was used to determine the level of reward given to the partic-
ipants in the reward group. This measure reflected partici-
pants’ performance on each trial. We present feedback on
the kinematicmeasure of each trial rather than only for force
compensation on the channel trials, as these are most fre-
quently encountered by participants and allow the presenta-
tion of reward feedback as often as possible. It is important
to note that participants can reduce the kinematic error to
increase reward through predictive compensation to the
force field, through increased cocontraction, limb stiffness,
and feedback gains, or through combinations of all of these
(64, 65). Five ranges of ±0.75-cm error were defined to pro-
vide the different rewards (Fig. 1B). The first closest range to
the perfect straight reaching movement (Fig. 1, A and D; S5,
lowest error possible, <0.75 from the target) to the furthest
range (S1, highest error possible,>3 cm from the target) were
respectively linked to the reward scale from “very happy”
(S5, þ 5 points in score, highest reward possible) to “neutral”
(S1, þ 1 point in score, lowest reward possible). Rewards were
given during the whole experiment except during the first
half of the preexposure phase and the full error-clamp phase.
In these “hidden reward” phases, the yellow digital face only
displayed a centered question mark (Fig. 1C) and the score
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was frozen. However, participants were still asked to perform
accurate movements, regardless of the phase. Specifically, in
the hidden reward error-clamp phase, while the displayed
score was frozen, the hidden total score took into account
the points gathered and was finally displayed at the end of
the experiment. For unsuccessful trials, no reward (þ0
points in score) was given to the participants, causing the
digital face to disappear until the next successful trial.

In the control group (8 male, 6 female; mean age 31.6 ±2.0
yr), no reward was given throughout the experiment.
However, to differentiate successful from unsuccessful trials,
a similar 6-cm-diameter yellow circle with a centered “OK”
was continuously presented on top of the screen (Fig. 1D)
when participants succeeded and disappeared when partici-
pants failed to have a successful trial. No score was given to
participants in this control condition.

Each group (condition) was counterbalanced such that
half of the participants experienced the adaptation phase
with contextual cues matched to one set of force field direc-
tions whereas the other half of the participants experienced
contextual cues matched to the opposite force field
directions.

Analysis

Data were analyzed offline with MATLAB (R2022a; The
MathWorks, Natick, MA). All measurements were low-
pass filtered at 40 Hz with a 10th-order zero-phase-lag
Butterworth filter (filtfilt). Over the course of the experiment,
the lateral force measured can vary because of the natural
drift of the mass of the arm over the air sled. To avoid inter-
ference in our measurements from this drift, we subtracted
the mean offset in lateral force for each participant meas-
ured between 250 and 150 ms before the movement start
from the total force trace. The start of the reaching move-
ment was defined as the cursor leaving the start position
(cursor center crossing the start position’s 1.5-cm radius),
and the end was defined as the cursor entering the target
(cursor center crossing the target’s 1.5-cm radius). To quan-
tify adaptation, the followingmeasures were calculated.

Success.
On field trials (null or curl field trials), we defined partici-
pants’ success as both their success type on each trial and
their level of overall percentage of success. The success type
was defined as the rewarding score given for the current
trial, and the level was defined as the mean across blocks of
trials and calculated for plotting purposes. The percentage of
success was defined as the percentage of each given success’s
type (0, 1, 2, 3, 4, and 5 separately) over all of the experiment.
As participants in the control group were not provided any
rewards, we estimated offline the success level equivalent to
their performance and compared this to the given success
level of the reward group.

Trajectory bias and variability.
We calculated both bias and variability in trajectories to
explore differences in movements between the control and
reward groups and their consistency over time. We first di-
vided each reaching movement into 100 evenly spaced data
points between the start and the end targets. For each of
these 100 data points, we calculated the mean and standard

deviation across the last five blocks of trials for the preexpo-
sure and adaptation (late adaptation). Additionally, to
explore the evolution of any biases over time, the mean bias
across the five blocks of trials of preexposure, the first block of
adaptation (early adaptation), the last five blocks of adapta-
tion (late adaptation), and the last two blocks of deadaptation
(late deadaptation) were calculated. The mean and standard
error of the mean across participants were then calculated for
each of these data points, to display the trajectories. The
variability was finally calculated for each participant by
averaging the standard deviation of the trajectories (100
data points per trajectory) across both preexposure and
late adaptation stages.

Kinematic error.
For each field trial (null or curl field depending on the tem-
poral phase), the maximum perpendicular error (MPE) was
calculated and used as a measure of kinematic error. MPE is
defined as the signed maximum perpendicular distance
between the hand trajectory and the straight line joining the
start position and the current displayed target.

Force compensation.
For both channel and instructed channel trials, the force
compensation was calculated to quantify the amount of pre-
dictive force adaptation to the force field. Force compensa-
tion is defined on each trial by regressing the end-point force
applied by the participant on the handle (lateral measured
force) against the force needed to compensate perfectly for
the force field (57). Specifically, the slope of the linear regres-
sion through zero is used as a measure of force compensa-
tion. The perfect compensatory force was determined as the
forward velocity of the current trial multiplied by the force
field constant k. As each group was counterbalanced across
participants, the values were flipped such that the force com-
pensation associated with each cue had the same sign for all
participants. Since the measure of force compensation is rel-
ative to the field, we inverted one cue for plotting to visually
differentiate the two opposing forces. All models used to fit
the data assume equal adaptation to both force fields. To
allow this equal adaptation, we subtracted blockwise the
mean across contextual cues from the force compensation
values for each contextual cue (see Fig. 4B).

Relative lateral force.
To examine the shape and timing of the force applied by the
participant to compensate for the disturbance, the relative
lateral forces were calculated. Individual force trials were
aligned to peak velocity and clipped between �300 and
þ 300 ms from this peak. For averaging and visualization,
we normalized forces in the x-axis by the peak of the perfect
compensation force profile. This perfect force profile was cal-
culated as the y-axis velocity multiplied by the force field
constant k.

Deadaptation phase.
Throughout the experiments, data are primarily presented
for each block. However, participants in the deadaptation
phase performed a different number of trials (blocks). This
phase was divided into equal-sized sections, where the mean
data were determined for each section rather than for each
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block, to allow averaging across participants: 35 (control)
and 14 (reward) averaging sections were used for kinematic
error, whereas 10 (control) and 4 (reward) averaging sections
were used for force compensation.

Model Fitting

Adaptation rate.
To examine differences in the trial time constant of adapta-
tion and final asymptote of the initial adaptation phase, we
fitted an exponential function to the force compensation for
each trial throughout this phase of the experiment. Here we
used the force compensation of both cues, such that the
force compensation for each cue increased over the adapta-
tion toward positive adaptation (both cues toward 100%) and
could reflect the total adaptation. We found the parameter
values that best fit the experimental data, using a least-
squares cost function (fminsearchbnd), where the asymptote
parameters were constrained between 0 and 100 and the
trial time constant was constrained between 0 and 10. The
adaptation rate and asymptote parameters were estimated
with a leave-two-out cross-validation sampling method to
obtain appropriate significance levels. A total of 91 sets of pa-
rameters were obtained from all sample combinations of 12
out of 14 participants’ data. The optimization was performed
10 times for each sample, with a random initial parameter
setting within the parameter constraints, and the one with
the smallest sum of squares error was used. For both groups,
the force compensations of normal and instructed channel
trials were used as two separate input variables of the fitting,
resulting in independent parameter sets.

Learning and retention rates of the multirate model.
Participants’ force compensation over the entire experiment
was fitted with a weighted triple-rate model (45, 66). This
model assumes that adaptation occurs through the summa-
tion (and competition) of two separate states weighted by
contextual cues (c), at fast (f), slow (s), and ultraslow (us)
timescales of learning and retention. Therefore, one set of
parameters included a retention rate A and a learning rate B
for a fast, a slow, and an ultraslow process, as well as one
overall weighted-switch C.

Themodel we used to fit experimental data is defined as

xnþ 1 ¼ ðxnþ 1
f þ xnþ 1

s þ xnþ 1
us Þ � cnþ 1 ð2Þ

where

xnþ 1
f ¼ Af � xn

f þ Bf � en � cn ð3Þ

xnþ 1
s ¼ As � xn

s þ Bs � en � cn ð4Þ

xnþ 1
us ¼ Aus � xn

us þ Bus � en � cn ð5Þ

en ¼ f n � xn ð6Þ
where xnþ 1 ¼ output on subsequent trial, xn ¼ output on
current trial, en ¼ error on current trial, A ¼ retention rate,
B ¼ learning rate, fn ¼ environmental force, and c ¼ [C, 1 �
C], where C is set as the weighted-switch estimated parameter.

First, the mean of force compensation values over the two
cues was subtracted to remove any potential bias between
the cues. Then, the force compensation was fitted with the
model using a least-squares cost function (fminsearchbnd).

We use a leave-two-out cross-validation sampling method to
obtain appropriate significance levels. For this, we estimate
each set of parameters by fitting the model to the force com-
pensation of a sample of 12 participants. A total of 91 sets of
parameters were obtained from all sample combinations of
12 out of 14 participants’ data. To obtain each of these 91
sample combinations, the optimization was performed five
times using a random initial parameter setting within the pa-
rameter constraints (see below). Out of these five fits, the pa-
rameter set that resulted in the smallest error was kept as the
single parameter set for this specific sample combination.
The random initial parameters were constrained as follows:

0:5 < Af < 0:88 < As < 0:999 < Aus < 1
0 < Bus < 0:002 < Bs < 0:03 < Bf < 0:30
0:5 < C < 1

To compare both groups and adaptation components, we
fitted the force compensation of normal and instructed
channel trials as two separate input variables, for both the
control and reward groups. Therefore, this model parameter
optimization process resulted in four batches of 91 sets of pa-
rameters: one batch of 91 parameter sets for the Control nor-
mal group, one batch for the Reward normal group, one
batch for the Control instructed group, and one batch for the
Reward instructed group. Only essential comparisons were
analyzed, such that the parameters of the Reward instructed
trials (Ri) were not compared with the Control normal trials
(C) as well as the Control instructed trials (Ci) with the
Reward normal trials (R).

Statistics

All statistical tests below were performed with JASP Team
(2022), JASP (version 0.16.3) (computer software), except for
the Kruskal–Wallis tests on the parameter estimates and the
t test on trial number in the deadaptation phase, which were
performed with MATLAB (R2022a; The MathWorks). Further
differences between levels were examined by Bonferroni
post hoc comparisons after each analysis of variance
(ANOVA).

Success.
We performed t tests for all comparisons between the reward
and control groups, except for success type 0, where a Mann–
Whitney t test was performed, and for success types 4 and 5,
where a Welch’s t test was performed instead, because of the
inequality of variances.

Variability.
A repeated-measures ANOVA with a main effect of stage (2
levels: preexposure and late adaptation) and the between-
subject factor group (2 levels: control and reward) was per-
formed to compare the variability in the preexposure and
late adaptation stages between groups.

Kinematic error and force compensation.
For the kinematic error, a repeated-measures ANOVA with a
main effect of stage [4 levels: preexposure (all blocks of tri-
als), early adaptation (first block of trials), late adaptation
(last 5 blocks of trials), and late deadaptation (last block of
trials)] and the between-subject factor group (2 levels: control
and reward) was used. For comparing the total adaptation
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between groups and stages, we applied a similar repeated-
measures ANOVA on the force compensation on normal
channel trials, with a main effect of stage [4 levels: preexpo-
sure (all blocks of trials), late adaptation (last 5 blocks of tri-
als), late deadaptation (last block of trials), and error clamp
(all blocks of trials)] and the between-subject factor group (2
levels: control and reward). A Greenhouse–Geisser sphericity
correction was used on the within-subject effect for both the
kinematic error and the force compensation. All post hoc
comparisons were performed with a Bonferroni correction.
Additionally for the error-clamp phase, the difference in
force compensation between both cues was calculated and
compared to zero with a one-sample t test for the control
group and a one-sample Wilcoxon test for the reward group.
To compare the implicit and total adaptation, we performed
two-sampleWilcoxon tests between the two channel types in
each group for the end stage of adaptation (5 last blocks) and
deadaptation (3 last blocks), except for the end stage of adap-
tation in the Reward group, where a Student t test was
performed.

Trial number difference.
To compare the length of deadaptation between the control
and reward groups, we performed a two-sample t test with
MATLAB on the number of trials for each participant across
groups.

Retention and learning rates.
To investigate the differences in retention and learning rates
between the control and reward groups, as well as the nor-
mal and instructed trial types, we performed Kruskal–Wallis
tests on the parameter estimates: 91 samples in each of the
four data sets (C, Ci, R, Ri) for all seven parameters (Af, As,
Aus, Bf, Bs, Bus, switch parameter C). Differences that were
found at a level below the 7th digit were considered invalid
because of the accuracy of floating point values in the soft-
ware (MATLAB R2022a). Therefore, we did not consider any
of their statistical effect.

RESULTS
Here, we investigated the influence of reward on dual ad-

aptation to novel force fields. One group of participants was
given different levels of reward depending on their lateral ki-
nematic error (reward group), whereas another group
received no additional feedback about their lateral error
(control group). Both groups were provided with online vis-
ual feedback of their movements. Both groups adapted to
two opposing force fields (separated with visual offset cues)
with an adaptation/deadaptation/error-clamp paradigm,
allowing us to examine the learning and retention parame-
ters of adaptation and compare differences in the formation
of motormemories with and without reward.

Success

What differentiated the reward and control groups is the
inclusion of reward, comprised of both visual feedback and
scores ordered in five different sections (from type 1, lowest
reward, to type 5, highest reward) for the reward group, which
did not exist for the control group. We examined the effect
that this feedback had on the specific levels of success

obtained by the participants across the experiment (Fig. 2A).
For the reward group this success type was provided directly
to the participants after each trial, whereas for the control
group this success type was calculated but never provided to
the participants. Although similar in the preexposure phase
across groups (t26 ¼ 1.154; P ¼ 0.259), the mean success level
increased faster (Fig. 2A) with reward during adaptation, with
evidence of a higher final level than the control group (t26 ¼
�2.510; P ¼ 0.019). Similar results were also seen in the dead-
aptation phase, with faster increases in success and higher
final levels for the reward group (t26 ¼ �3.128; P ¼ 0.004).
Note that a trial was considered successful if it initially satis-
fied movement speed requirements (otherwise the success
was set as 0) and was additionally assigned a score (between 1
and 5) depending on its lateral kinematic error (maximal per-
pendicular error). Importantly, we found no difference in the
percentage of unsuccessful trials (Fig. 2B) between the control
(31.6%) and reward (29.2%) groups (U ¼ 97.000; P ¼ 0.982)
across the whole experiment. This implies that the presence
of the reward feedback did not influence the overall success
or failure rate (for example, through reducing the speed of
movements to better counter the disturbance) but appears to

A

B C

Figure 2. Success level. A: mean success level for the control group (blue)
and the reward group (dark orange) during the preexposure, adaptation,
and deadaptation phases (normal trials only). The mean (solid line) and SE
(shaded area) of the success level across participants were calculated for
each block. B: mean and SE of the percentage of unsuccessful trials (suc-
cess type 0) during the preexposure, adaptation, and deadaptation phases.
C: mean and SE of the percentage of successful trials for the 5 different suc-
cess levels across the first 3 phases. Channel trials are excluded in this anal-
ysis. Statistical differences are indicated with �P< 0.05 and ��P< 0.01.
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primarily have an effect on the relative level of success,
through reductions in the lateral error.

Reward feedback had the largest influence on the distribu-
tion of success type (Fig. 2C). Although participants in both
groups obtained similar numbers of trials with success type 3
(t26 ¼ 0.293; P ¼ 0.772) and type 4 (t20.734 ¼ �1.757; P ¼
0.094), the reward participants attained a higher number of
trials with success type 5 (t18.569 ¼ �3.385; p ¼ 0.003, with
reducing their success type 1 (U ¼ 159; P ¼ 0.005) and type 2
(t26 ¼ 2.138; P ¼ 0.042). The reward group resulted in partici-
pants obtaining higher scores by making movements with
smaller lateral errors, and this from an early stage in the ad-
aptation phase.

Trajectory Bias and Variability

In addition to the effects on success levels, the presence of
reward could have an effect on the kinematic trajectory, in
particular in the bias and variability of the paths. The bias,
or mean trajectory, used to reach the target location (Fig. 3A,
solid lines) and its variability across participants were exam-
ined across four stages of the experiments. As expected, no
differences were seen in the preexposure stage. It can be
seen that the reward group exhibited smaller deviations
from the straight line between the start and end targets, par-
ticularly in the late adaptation and late deadaptation stages.
In addition, we examined the effect of reward on the vari-
ability of trajectories around each participant’s mean in the
late adaptation stage (Fig. 3B). A repeated-measures ANOVA

with a main effect of stage (2 levels: preexposure and late
adaptation) and the between-subject factor group (2 levels:
control and reward) showed a main within-subject effect
of stage (F1,26 ¼ 62.065; P < 0.001) and of the interaction
group � stage (F1,26 ¼ 9.512; P ¼ 0.005) and for the
between-subjects factor group (F1,26 ¼ 4.685; P ¼ 0.040). As
expected, no difference in variability is seen between groups
in the preexposure stage (post hoc comparison: P ¼ 1.000),
and participants increase their variability from the preexpo-
sure to the late exposure stage in both the control (post hoc
comparison: P< 0.001) and reward (post hoc comparison: P¼
0.002) groups. Additionally, we found a difference in the vari-
ability of the trajectories between the control and reward
groups at the end of adaptation (post hoc comparison: P ¼
0.003). This shows that the reduction in trajectory deviation
in the reward group occurred with a present but significantly
smaller increase in the trial-by-trial variability in these trajec-
tories than in the control group.

Adaptation

Both groups experienced large errors induced by initial
force field exposure, which were reduced during the adapta-
tion process (Fig. 4). Similarly, in the deadaptation phase,
when the association between the force field and the cue was
reversed, participants’ error considerably increased before it
reduced back toward the level experienced during the initial
exposure (first trials of the adaptation phase). Overall, both
groups of participants were able to independently adapt and

A

B

Figure 3. Trajectory bias and variability. A: mean trajec-
tory (solid line) and SE across participants (shaded area)
of each cue separately (light and dark solid lines) for pre-
exposure (all blocks), early adaptation (first block), late ad-
aptation (last 5 blocks), and late deadaptation (last 2
blocks) for the control (blue) and reward (orange) groups.
B: mean trajectory variability across preexposure (all
blocks) and late adaptation (last 5 blocks) for each partici-
pant. The dotted black line represents the mean variability
of all participants across both conditions in preexposure
and is displayed as a reference. Channel trials are
excluded in this analysis.
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deadapt to the opposing force fields, displaying similar end
levels of adaptation but with differences in the rates and
extent of deadaptation (Fig. 4, C and F), suggesting differen-
ces in the underlying processes of adaptation.

We investigated differences in kinematic error with a
repeated-measures ANOVAwith amain effect of stage (4 lev-
els: preexposure, early adaptation, late adaptation, late dead-
aptation) and the between-subjects factor group (2 levels:
control and reward). We found main within-subject effects
of stage (F1.592,41.391 ¼ 181.086; P < 0.001) and of the interac-
tion group � stage (F1.592,41.391 ¼ 15.983; P < 0.001) but none
for the between-subjects factor group (F1,26 ¼ 0.274; P ¼
0.605). The repeated-measures ANOVA performed on the
force compensation had a main effect of stage (F1.545,40.171 ¼
128.755; P< 0.001) and group� stage (F1.545,40.171¼ 9.369; P¼
0.001) but similarly no evidence of an effect of group (F1,26 ¼
0.484; P ¼ 0.493). Further differences between levels were
examined with Bonferroni post hoc comparisons.

Participants of both groups had the same performance
level at the beginning of the experiment (preexposure phase;

Fig. 4), with no differences in kinematic error (P ¼ 1.000) or
force compensation (P ¼ 1.000). Additionally, the relative
force profile (Fig. 5A) for the two contextual cues in each
group were indistinguishable, with force profiles close to the
zero level of adaptation as expected.

In the adaptation phase, each contextual cue was associ-
ated with one of two curl force fields (clockwise and coun-
terclockwise). Initial trials exhibited large kinematic errors
in the lateral direction depending on the force field (cue 1
and cue 2; Fig. 4, A and B, light and dark colors), with a dif-
ference between groups (post hoc comparison: P ¼ 0.019).
The early stage of adaptation, being composed of the first
five blocks of trials (similar length as the preexposure
phase, 170 trials) allows us to assess the early effects of the
reward. The difference between the control and reward
groups reflects an effect of the reward already from the
early stage of the adaptation. Over the adaptation phase,
the kinematic error decreased to 1.8 ± 0.4 cm (absolute av-
erage across cues) for the control group (Fig. 4A, blue) and
to 0.8 ± 0.1 cm for the reward group (Fig. 4B, orange), with

A B C

D E F

Figure 4. Temporal pattern of adaptation. A–C: mean kinematic error for both the control (blue) and reward (orange) groups. Mean kinematic error (solid
line) and SE of the mean (shaded region) are shown across the preexposure (white), adaptation (gray), deadaptation (dark gray), and error-clamp (light
gray) phases. The data of contextual cue 1 (left visual workspace shift) and cue 2 (right visual workspace shift) are presented in light and dark blue (A,
control) and orange (B, reward) lines. C: comparison of the mean across cues between the control (blue) and reward (orange) groups. For illustrative pur-
poses the sign of the error was flipped for 1 of the cues. D–F: mean force compensation for normal (solid line) and instructed (dashed line) channel trials
over the preexposure (white), adaptation (gray), deadaptation (dark gray) and error-clamp (light gray) phases. For illustrative purposes, the data of 1 of
the cues was flipped. The force compensation for the 2 contextual cues (D and E) is symmetrical because of the subtraction of the mean force compen-
sation across the 2 cues. F: comparison of the mean across cues between the control (blue) and reward (orange) groups.
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no difference between the two groups (Fig. 4C; post hoc
comparison: P ¼ 0.253). Additionally, the relative force
compensation (solid blue and orange lines, Fig. 4, D and E)
increased up to 56.3 ± 0.1% (control) and 75.0 ±0.0%
(reward) but with no difference in the levels of adaptation
between the groups (Fig. 4F; P ¼ 0.284). Importantly, par-
ticipants adapted to both opposing cues simultaneously,
which can be seen by the large force compensation in op-
posite directions at the end of the adaptation phase (Fig. 4,
D and E, light and dark colors) and the velocity-like bell-
shaped curves of the relative force profiles (Fig. 5; adapta-
tion phase). These results indicate that the cues (opposing
workspace visual location) allowed dual adaptation to
occur with appropriate adaptation to the two opposing ve-
locity-dependent force fields.

In the following deadaptation phase, participants experi-
enced initial high lateral errors in the opposite directions for
each cue association. However, they were able to reduce
their error quickly as their total force compensation
decreased back toward preexposure level. Overall, the
reward group had a much smaller level of kinematic error at
the end of the deadaptation phase (post hoc comparison: P <
0.001). By the end of the deadaptation phase, both groups
had started adapting to the opposite force field, with final
deadaptation levels of force compensation of around
�15.3±4.4% for control participants and �48.6 ± 10.6% for
reward participants. These results are again supported by
the force profiles (Fig. 5), showing that the mean relative
force for both cues flipped signs at the end of the deadapta-
tion phase, with a higher absolute peak force value for the
reward group. Our experimental design required partici-
pants to deadapt back to the preexposure level minimum
before switching into the error-clamp phase. Therefore, we

expected no differences in force compensation between the
groups at the end of this stage, but we actually found one
(P < 0.001). All control participants did not trigger this
switch and therefore performed the maximum amount of
blocks of trials in the deadaptation phase (340 trials). This
does not necessarily mean that they reached the expected
deadaptation level and therefore could still be higher than
needed. In contrast, many reward participants (9/14) reached
this requirement and therefore switched earlier into the
error-clamp phase (mean of 235.6±29.7 trials), reaching the
expected deadaptation level. Therefore, the difference in
force compensation between control and reward partici-
pants would be justified. Additionally, we could find a differ-
ence in average deadaptation time between groups, where
reward participants deadapted faster than control partici-
pants (t26¼ 3.5154, P¼ 0.002).

In the final error-clamp phase, channel trials clamped the
lateral error to zero in order to assess the remaining adapta-
tion through the presence of spontaneous recovery (45, 57).
No difference in force compensation between control and
reward participants was found (post hoc comparison: P ¼
1.000). Although the force profiles (Fig. 5) show traces of the
initially learned force field for the reward group, there was
no evidence for spontaneous recovery in either group.
Specifically, we calculated the difference in force compensa-
tion between both cues and found no deviation from zero for
both the control (1-sample t test: t13 ¼ 1.583, P ¼ 0.137) and
reward (1-sample Wilcoxon test, V ¼ 80.000, P ¼ 0.091)
groups.

Overall, no statistical differences in force compensation
are seen between the two groups. However, we observe a
small qualitative difference in force compensation (Fig. 4C)
and force profiles (Fig. 5) between the two groups at the end

A

B

Figure 5. Profiles of predictive force. A: force profiles
on the normal (solid line) and instructed (dashed line)
channel trials for the control group as a function of
movement time in the preexposure phase (all 5 blocks
of trials), adaptation (last 5 blocks of trials), deadapta-
tion (last 3 blocks of trials), and error clamp (all 5 blocks
of trials). The force values are shown as a percentage
of perfect force compensation and aligned to peak ve-
locity. The 2 cues are represented by the dark and light
colored lines. B: force profiles for the reward group.
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of adaptation, which may continue in the following phases.
To understand better the discrepancy between the statistical
results and the qualitative observations, we examined the
individual data in force compensation (Fig. 6). In the indi-
vidual adaptation results, we see a larger variability across
cues and participants in the control group compared with
the reward group. Instead, the reward participants display
more consistent end level of adaptation. In this case, it is
possible that the results tend toward a difference in end-level
adaptation but the high variability across participants masks
any statistical support.

Implicit and Explicit Contributions

To further study the effect of reward on adaptation, we
dissociated the implicit contribution compared to the total
adaptation through the use of instructed channel trials (37,
38), where participants were instructed that the forces had
been removed. The concept is that the force compensation
observed in instructed trials represents the implicit compo-
nent of adaptation. Consequently, we assume that the differ-
ence between this implicit level of adaptation and the
overall level of adaptation, measured on channel trials,

reveals the explicit strategies used by participants to improve
their performance.

In the control group (Fig. 4 and Fig. 5 blue color), we
observed no difference at the end of the adaptation phase in
force compensation between channel and instructed chan-
nel trials (V ¼ 54.000, P ¼ 0.952). Indeed, these measures
were similar throughout the adaptation phase, suggesting
that most of the adaptation in the control group was implicit
in nature. In contrast, in the reward group (Fig. 4, E and F),
we found evidence for a larger force compensation on chan-
nel trials than on instructed channel trials (t13 ¼ 2.296, P ¼
0.039). We therefore find evidence for the use of explicit
strategies at the end of adaptation in the reward group but
none for the control group. One notable effect is that the rate
and amount of implicit adaptation are almost identical
between the reward and control groups across the adapta-
tion phase (Fig. 4F and Fig. 5), suggesting that reward had
little or no influence on the implicit processes. The dead-
aptation phase shows similar results, with no difference
between total and implicit adaptation for the control
group (V ¼ 33.000, P ¼ 0.241) but a difference for the
reward group (V ¼ 20.000, P ¼ 0.042). Additionally, we

Figure 6. Temporal pattern of adaptation for individual participants (P1–P28). Mean force compensation (FC) (solid line) and SE of the mean (shaded
region) across cues for both the control (blue) and reward (orange) groups, throughout the preexposure (white), adaptation (gray), deadaptation (dark
gray), and error-clamp (light gray) phases. The mean block values are smoothed using a moving average with a window of 3 blocks.
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find no statistical difference when we compare the implicit
adaptation of the reward group with the implicit (V ¼
52.000, P ¼ 1.000) and the total (V¼ 48.000, P ¼ 0.808) ad-
aptation of the control group. These results suggest that
most if not all of the differences in adaptation between the
control and reward groups come from explicit strategies.

Interestingly in the reward group, whereas only a small
difference is found at the end of adaptation in the total adap-
tation (normal channel trials) compared with the implicit ad-
aptation (instructed channel trials), reflecting the presence
of explicit strategies, a larger difference is observed in the
earlier stages of learning. To examine whether this might
reflect a stronger explicit component, and investigate the
effect of reward on the implicit adaptation, we performed
further analysis on both the adaptation rate (exponential fit)
and the learning and retention rates (multiratemodel).

Adaptation Rate

Wefitted an exponential function to the force compensation
data during the adaptation phase to assess the rate of adapta-
tion during the initial exposure. The parameters were esti-
mated with a leave-two-out cross-validation sampling (see
METHODS), providing a total of 91 estimates for each parameter.
This resulted in the parameter distributions for both the trial
adaptation rate and asymptote for the control (C) and reward

(R) groups and for the normal (C and R) and instructed (Ci and
Ri) channel trials (Fig. 7). The best fit exponential function
(Fig. 7A) and estimated parameters for the asymptote of adap-
tation (Fig. 7B) and the trial adaption rate (Fig. 7C) show clear
differences between the control and reward groups. In particu-
lar, similar to the final adaptation level for the force compen-
sation data, the asymptote is larger for the total reward
condition than for the other three conditions, although there
are differences between all conditions (Fig. 7B). However, the
exponential fits allow us to examine the rate of adaptation
across all four conditions. We find a faster adaptation rate for
the reward compared to the control condition (Fig. 7C) for
both normal (R: 0.008, C: 0.0053) and instructed channel (Ri:
0.0057, Ci: 0.0033) trials. Furthermore, differences in the ad-
aptation rate between normal and instructed channel trials
are observable in the reward (R: 0.008 against Ri: 0.0057) and
control (C: 0.0053 against Ci: 0.0033) groups. Overall, these
results suggest that reward increases the trial-by-trial adapta-
tion rate compared with the control condition. Additionally,
the differences for both groups between the normal and
instructed channel trials suggest that an explicit component is
present in the overall adaptation to novel force field, which
might be increased through the presence of reward. To assess
these results in more detail, we fitted the entire experimental
data with amultiratemodel for deeper analysis.

A B C

Figure 7. Rate of adaptation to the novel dynamics in the adaptation phase. A: best-fit adaptation curve using the mean parameters across fits to the ex-
ponential function for the control (blue) and reward (orange) groups. Solid lines indicate the fits for the channel trials, and dashed lines indicate the fits
for the instructed channel trials. B: the best-fit parameters of the asymptote of adaptation. Parameters are estimated separately for the instructed and
normal channel trials. Model parameters were obtained by leave-two-out cross-validation sampling method, which provided 91 estimates of each param-
eter. Parameter estimates are plotted with boxchart in MATLAB, where the line indicates the mean, the shaded notch indicates the 95% confidence
intervals, the upper and lower edges of the box contain the upper and lower quartiles, the whiskers contain the nonoutlier maximum and minimum, and
any outliers are indicated with small circles. If the shaded notch regions do not overlap, then the parameters have different medians at the 5% signifi-
cance level. C: the best-fit parameters of the adaptation rate (trial constant of adaptation).
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Differences in Multirate Model Components

To examine the underlying processes of general adaptation
of novel force field and more specifically to dual adaptation,
we used a triple-rate model with a weighted contextual cue
switch parameter (Switch) (45). We therefore assessed the dif-
ference in retention (parameter A) and learning (parameter B)
rates between the two groups and how they behave over the
experiment, as well as how contexts are dissociated through
contextual cues (Switch parameter). This model was fitted in-
dependently to the force compensation on instructed and
noninstructed channel trials to separate the implicit and
explicit components of adaptation. All parameters were esti-
mated with a leave-two-out cross-validation sampling (see
METHODS), providing 91 parameter estimates of the fast (f),
slow (s), and ultraslow (us) processes for each of the four
groups C (Control), Ci (Control instructed), R (Reward), Ri
(Reward instructed). These parameter estimates and their
medians, displayed in Fig. 8, show differences across both the
groups and channel trial types.

The fast process (Fig. 8A) shows clear differences between
the control and reward groups in normal and instructed
channel trials for both retention [H(3)¼ 51.1, P< 0.0001] and
learning [H(3) ¼ 255.7, P < 0.0001] rates. There was a signifi-
cant difference in the retention rates between reward and
control groups for both the noninstructed (Af, C and R, P <
0.0001) and instructed (Af, Ci and Ri, P ¼ 0.0271) channels
as well as within the reward group (R and Ri, P¼ 0.0003) but
not within the control group (Af, C and Ci, P ¼ 0.3112). For

the learning rates (Bf), we found a difference in normal trials
between the reward and control groups (Bf, C and R, P <
0.0001) and the reward instructed and control instructed
groups (Bf, Ci and Ri, P < 0.0001). There was also evidence
for higher learning rates in normal comparedwith instructed
trials in the reward (Bf, R and Ri, P< 0.0001) but not the con-
trol (Bf, C and Ci, P ¼ 0.5195) group. Importantly, the differ-
ence of the learning rates between the instructed and
noninstructed trials is very large for the reward (0.0882),
which strongly suggests a great use of explicit strategies in
the reward group, which might also account for the higher
early adaptation (Fig. 3). These results suggest that the use of
reward increased adaptation through both learning and
retention rates of the fast process. Both the retention and
learning rates are improved implicitly and explicitly.
However, the difference in learning rate’s improvement
between reward and control is significantly greater than for
the implicit. This suggests that the learning rate is mainly
enhanced through explicit strategies, with a small increase
in the implicit component, whereas the retention rate seems
to increase lightly implicitly only, with the presence of an
explicit component independently from the use of reward.

For the slow process (Fig. 8B), we also found differences
across groups for both the retention [As, H(3) ¼ 189.37, P <
0.0001] and learning [Bs,H(3) ¼ 273.69, P < 0.0001] rates. In
the retention rate, there is a difference between the reward
and control groups for both normal (As, C and R, P¼ 0.0003)
and instructed (As, Ci and Ri, P < 0.0001) trials. The control
group shows no difference between trial types (As, C and Ci,

A B C D

Figure 8. Best-fit triple-rate model parame-
ters. Retention rate (top) and learning rate
(bottom) parameters fitted to the weighted
triple-rate model, containing fast (A), slow
(B), ultraslow (C), and weighted-switch (D)
parameters. The upper or lower bounds
(black dotted lines) are displayed when
they are contained within the figure axis
limits. Parameters are estimated separately
for the instructed and normal channel trials.
Model parameters were obtained by leave-
two-out cross-validation sampling, which
provided 91 estimates of each parameter.
Parameter estimates are plotted with box-
chart in MATLAB, where the line indicates
the mean, the shaded notch indicates the
95% confidence intervals, the upper and
lower edges of the box contain the upper
and lower quartiles, the whiskers contain
the nonoutlier maximum and minimum, and
any outliers are indicated with small circles.
If the shaded notch regions do not overlap,
then the parameters have different medians
at the 5% significance level.

REWARD AFFECTS IMPLICIT AND EXPLICIT DUAL ADAPTATION

J Neurophysiol � doi:10.1152/jn.00307.2023 � www.jn.org 13
Downloaded from journals.physiology.org/journal/jn at Univ of California Berkeley (169.229.238.042) on August 12, 2024.

http://www.jn.org


P ¼ 0.9995). However, the reward group displays a strong
difference between the normal and instructed trials (As, R
and Ri, P < 0.0001), suggesting an involvement of explicit
strategies. For the learning rates (Bs), we find a clear differ-
ence only between reward and control conditions for both
the normal (Bs, P < 0.0001) and instructed (Bs, p < 0.0001)
trials. However, there are no differences in the learning
rates between the normal and instructed trials for either
the control (Bs, C and Ci, P ¼ 0.7900) or reward (Bs, R, and
Ri, P ¼ 0.8717) groups. This suggests that reward only
influences the slow learning rate through an increase in
implicit adaptation.

Parameters of the ultraslow process showed evidence of
different learning [Bus,H(3) ¼ 94.4, P < 0.0001] and reten-
tion [Aus, H(3) ¼ 37.13, P < 0.0001] rates across groups
(Fig. 8C). Although the retention rate had a main effect, we
did not find any difference between the reward and con-
trol groups for both normal and instructed trials (Aus, C
and R, P ¼ 1.0000, Ci and Ri, P ¼ 0.3727). No effect was
found between trial types for both control and reward
groups (Aus, C and Ci, R and Ri, decimal limit reached).
Similarly, although we found a significant main effect of
the Kruskal–Wallis test for the learning rate, we found no
significant difference in learning rates between groups for
instructed trials (Bus, Ci and Ri, P ¼ 0.1409) and normal
trials (Bus, C and R, decimal limit reached). Whereas no
differences were present between trial types for the control
group (Bus, C and Ci, P ¼ 0.0530), we found a difference
between normal and instructed trials in the reward group
(Bus, R and Ri, P < 0.0001). Although the differences are
small, the lower learning rates of instructed trial parame-
ters in both control and reward groups suggest a possible
role of explicit strategies.

Contextual cue switch parameter estimates (Fig. 8D) also
show differences across groups and trial types [Switch,H(3) ¼
188.97, P < 0.0001]. First, the reward group shows an increase

from the control group regardless of trial type (Switch, C and
R, P < 0.0001; Ci and Ri, P < 0.0001). Second, the normal tri-
als display higher values than their respective instructed trials
(Switch, C and Ci, P < 0.0001) in the control group but not in
the reward group (Switch, R and Ri, decimal limit reached).
These results suggest twomain findings. First, the presence of
reward increases the weight of the contextual cue switch.
Second, it appears that a small, but existent, explicit strategy
contributes to the switching between two different cues.
However, it is important to note that these small differences
include values close to 1. This may suggest little overall
impact on motor adaptation when we consider that the range
of the switch parameter is from 0.5 (which would be a 50%
estimation of the adequate motor memory to update for both
opposing contexts) to 1 (100% certainty for the motor memory
to update). To evaluate the impact of the differences in the
switch parameters, we simulated how adaptation would be
impacted by different rates of this parameter in our experi-
mental design (Fig. 9). These results clearly show differences
between the simulated rates, and therefore between the dif-
ferent groups associated with these rates (Switch, R and Ri ¼
1, C ¼ 0.98, Ci ¼ 0.95). Although the differences between the
switch parameter are little, they can produce large effects on
the overall adaptation.

In our experimental design, we chose a contextual cue
known to be very effective in distinguishing two opposing
force fields (43, 45). According to a previous study (38), the
use of this effective cue appears to primarily drive implicit
learning. Therefore it is possible that any explicit strategy
effect on the weight of the contextual cue switch might be
hard to distinguish with this type of cue. It would be neces-
sary to further investigate this switch parameter with other
types of cues.

To ensure that these findings are not specific only to the
triple-rate model, we performed an identical experimental
fit to the weighted-switch dual-rate model (Fig. 10). The

Figure 9. Effect of different contextual cue switch pa-
rameters. Simulation of the force compensation over
an adaptation/deadaptation/error-clamp experiment
with 2 different cues. The weighted triple-rate model
was simulated with 7 different contextual cue switch
parameter values (0.75–1). All other parameters were
kept constant, using the median of fitted learning and
retention parameters for the control condition. The
background areas represent the preexposure (white),
adaptation (gray), deadaptation (dark gray), and error-
clamp (light gray) phases. It is clear that even small dif-
ferences in the weighting parameter, such as found in
the control group, can produce large differences in the
overall adaptation. C, control; Ci, control instructed; R,
reward; Ri, reward instructed.
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general pattern of variation in parameters across the four
groups of trials exhibits some similarities. Although differen-
ces are found in all parameters, one consistent finding is that
again reward contributes to an increase in both the fast and
slow learning rates (except for the slow process in the reten-
tion rate), with evidence that an explicit component is re-
sponsible for these differences in the learning rates.

Over all timescales, whereas small differences were pres-
ent in the retention rates, strong effects are seen in the learn-
ing rates. Indeed, reward increased the rate of learning of
both fast and slow processes. Whereas this improvement
arises from implicit mechanisms for the slow process, strong
explicit strategies emerged in the fast process. These explicit
strategies were also apparent in the contextual cue switch,
an important parameter for dual adaptation, which relies on
human capacity to dissociate environmental contexts.

Finally, we took the median parameters fit across all
participants and conditions and simulated our experi-
ments (Fig. 11). These parameters are able to capture all
the major effects found in the experimental data (Fig. 12).
Specifically, we find a slightly faster and higher adapta-
tion in the reward normal trials compared with the other
three groups (control normal, control instructed, and
reward instructed trials). They also capture the faster
deadaptation in the reward group and slightly higher
rebound of the predictive forces in the error-clamp phase.
Overall, this shows that the parameters estimates obtained
are able to recapture most of the key elements of the exper-
imental results (Fig. 4, D–F).

DISCUSSION

The goal of this study was to investigate the influence of
reward on dual adaptation, and more specifically on the dif-
ferent components of adaptation. A reward group and a con-
trol group simultaneously adapted to two opposing force
fields cued by visual feedback location. We found an
increase in success level for the reward group, suggesting
overall straighter reaching movements, with differences
between control and reward groups in late adaptation and
deadaptation for both bias and variability. Participants of
both groups were able to adapt independently to the two
opposing force fields, reaching a roughly similar final adap-
tation level at the end of adaptation, with some evidence for
explicit strategies contributing to slightly higher and faster
adaptation in the reward group. Although the reward group
displayed a faster deadaptation than the control group, we
found no difference in the error-clamp phase between
groups. To examine how reward affects different adaptive
processes, we fitted a weighted triple-rate adaptation model
to the experimental force compensation data on normal and
instructed trials. The reward group showed clear differences
on the fast and slow timescales of adaptation but no effect
on the slowest timescale: the ultraslow process. Differences
in the model parameters on the instructed channels and
between instructed and noninstructed channels demon-
strated that reward influenced adaptation through both
implicit and explicit adaptive processes. Reward drove
changes in implicit adaptation, producing small increases in

A B C

Figure 10. Best-fit dual-rate model param-
eters. Retention rate (top) and learning
rate (bottom) parameters fitted to the
weighted dual-rate model, containing fast
(A), slow (B), and weighted-switch (C) pa-
rameters. The upper or lower bounds
(black dotted lines) are displayed when
they are contained within the figure axis
limits. Parameters are estimated separately
for the instructed and normal channel trials.
Model parameters were obtained by leave-
two-out cross-validation sampling, which
provided 91 estimates of each parameter.
Parameter estimates are plotted with box-
chart in MATLAB, where the line indicates
the mean, the shaded notch indicates the
95% confidence intervals, the upper and
lower edges of the box contain the upper
and lower quartiles, the whiskers con-
tain the nonoutlier maximum and mini-
mum, and any outliers are indicated with
small circles. If the shaded notch regions
do not overlap, then the parameters
have different medians at the 5% signifi-
cance level.
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both the fast learning and retention rates but strong
increases in the slow learning rate. In addition, reward pro-
duced a strong explicit increase in the learning rate of the
fast process. Although the contextual cue switch parameter
(for our experimental design) is primarily implicit in nature
according to the control group results, it appears that this is
enhanced by an explicit process, which appears to increase
in the presence of reward. Supporting previous findings (38),
we found no major contribution of explicit adaptation to the
control group adaptation processes, suggesting that learning
of novel dynamics is primarily implicit in nature in the ab-
sence of rewards or punishments.

In our experiment, we designed the reward to be dependent
on the participants’ horizontal kinematic error (maximum
perpendicular error). Therefore, to increase reward, partici-
pants needed to execute straighter movements. Indeed, we
found straighter trajectory profiles from the reward group
compared with the control group. However, not only were the

participants straighter and reduced their horizontal kinematic
error faster but they also became more consistent in their
movement, with a reduced trial-by-trial variability in these
trajectories as seen previously (13). Previous studies have con-
sidered variability as an implicit form of motor exploration
during periods of low success in search of a more rewarding
state (6, 67). In this framework, movement variability would
decrease in periods of high reward probability, as the need for
changing their current successful motor command decreases
(68). This suggests that participants achieve a higher state cer-
tainty and therefore perform more consistent movement (4,
69). Our present results are consistent with this idea that vari-
ability in motor commands is partly driven by the history of
reward. However, it has also been shown that reward can
increase accuracy and decrease variability through increased
muscle cocontraction and limb stiffness (70), which has also
been shown to increase the speed of adaptation to novel force
fields (71). Indeed, an increased muscle cocontraction is also

Figure 11. Predictive adaptation of our experimental design using the best-fit parameters. Simulation of the force compensation on normal (solid line)
and instructed (dashed line) channel trials for the control (blue) and reward (orange) groups. The experiment was simulated by the weighted triple-rate
model using the median of fitted parameters for the learning and retention rates.

Figure 12. Predictive adaptation of our ex-
perimental design using the best-fit param-
eters displaying its 3 timescales. Simulation
of the force compensation on normal (solid
line) and instructed (dashed line) channel
trials for the control (blue) and reward (or-
ange) groups displaying the fast, slow, and
ultraslow processes (red, magenta, and
dark blue dotted lines, respectively). The
experiment was simulated by the weighted
triple-rate model using the median of fitted
parameters for the learning and retention
rates. As both cues are equivalent in profile
except for a reversed sign, only 1 cue is dis-
played for clarity.
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consistent with our results, which show a greater difference in
end level of kinematic error between reward and control par-
ticipants compared with the difference in end-level force
compensation. Although we did not record muscle [electro-
myographic (EMG)] activity, we would predict that there was
a higher level of muscle cocontraction in the reward group
compared with the control group.

Statistically, participants of both groups exhibited similar
levels of force compensation and kinematic error at the end of
adaptation, unlike a previous study of force field adaptation
that showed different final adaptation levels for reward and
control conditions (14). There are possible reasons for these dif-
ferences. First, their study examined older stroke survivors,
whereas our study focused on young healthy adults. Second,
their design had a shorter adaptation phase of 350 trials, com-
pared with our 952 trials, and only examined adaptation to a
single force field whereas we examined simultaneous adapta-
tion to two opposing force fields. It is possible therefore that
the final levels would have eventually come to the same level
for both control and reward groups if a longer adaptation
phase was provided. Third, their study examined kinematic
error reduction rather than force compensation, which means
that different levels of final adaptationmight also reflect differ-
ences in limb stiffness contributions to error reduction (72, 73).
However, it is important to note that we do find evidence for
differences across conditions with the estimates of the asymp-
tote from the exponential fits. Indeed, the asymptote estimates
are similar to participants’ end level of force compensation,
with evidence for clear differences between the groups.
Additionally, the qualitative observation of the end level of
force compensation also shows a small difference between
groups. With the difference between groups shown by the ex-
ponential fit, it also seems plausible that the reward group
achieved a slightly higher asymptotic performance by the end
of the adaptation phase, similar to the previous work. In this
case, it is possible that a high interindividual variability in our
present results hides a real difference of adaptation between
groups. Finally, we do find similarities with the study of
Quattrocchi and collaborators (14) in the beginning of the
adaptation phase, as well as in the deadaptation phase.
These both reflect early stages of adaptation, for example
toward the second opposing environment for the deadap-
tation phase, due to the short trial number in this phase.
In both stages, we found that reward produced faster adap-
tation, or deadaptation, in the early parts of the adaptation
process, a claim that has been made by Quattrocchi and
collaborators (14). Overall, our findings are consistent with
their study in that reward improves early adaptation to
novel dynamics.

To quantify differences in implicit and explicit adaptation
between the reward and control groups, we assessed the as-
ymptote and rate of adaptation and further the learning and
retention rates of adaptation for each group to objectively
compare their differences. The exponential fit showed a clear
use of explicit strategies for both control and reward groups,
a higher adaptation rate for the reward group, and evidence
for stronger use of explicit strategies in the final level of ad-
aptation (asymptote). To examine the specific effects
in more detail, we fitted a triple-rate model of adaptation
including fast, slow, and ultraslow processes to the data of
each group. These results allowed us to compare the previously

analyzed processes at the end of adaptation to earlier ad-
aptation stages. Although it depends on the exact parame-
ters, we can imagine that the contributions of each of the
different processes of the triple-rate model analysis are
more active at different times within the experiment (Fig.
12). In this case, the fast process, highly sensitive to move-
ment errors, mainly drives the adaptation in very initial
stages of force field exposure and is followed by the slow
process, which contributes most in the middle of adapta-
tion, when participants’ error has been reduced. Finally,
the ultraslow process takes over in the late exposure. The
reward group had higher fast and slow learning rates,
which explains the faster reduction in error for the reward
group in the early stages of adaptation. Similarly, the
higher fast and slow learning rates strongly influence the
deadaptation of the reward group, who exhibited signifi-
cantly lower numbers of trials to reach a similar level of
deadaptation. This clear difference in learning rates is in
line with previous studies that claimed an increase of
learning rate in rewarded contexts (12, 13).

This present study aimed to assess how reward influences
implicit and explicit contributions to motor adaptation.
Whereas reward affects the slow learning process primarily im-
plicitly, it strongly affects fast learning through the use of
explicit strategies, with a small contribution of the implicit
component. Several studies have suggested the use of explicit
strategies as a mechanism to improve motor performance in
rewarded states (74, 75). One theory relies on the fact that
explicit strategies mainly drive early adaptation to reduce sys-
tematic errors, as a compensation for the slower implicit adap-
tation (76–80) activated through cerebellar brain areas (4, 28,
81–84). In addition, while the implicit component increases
over time, the use of explicit strategies reduces, inducing a
total adaptation relyingmore on the implicit component of ad-
aptation (85, 86). The present results show no explicit compo-
nent in the slow and ultraslow process learning rate and a high
implicit component in the slow process. Additionally, the
deadaptation phase reveals that reward participants rely only
on explicit strategies to deadapt faster than the control partici-
pants, with a similar level of implicit adaptation for the reward
and control groups and of total adaptation for the control
group. As the implicit adaptation appears at the same level at
the end of the deadaptation phase as well as in the error-clamp
phase, it is realistic to suggest that the retention is mainly
driven by the implicit component through slower timescales.
Furthermore, this implicit-only ultraslow process did not show
an enhancement in motor performance in the reward group
compared to the control group, explaining why we find similar
final adaptation levels in the two groups. This additionally
supports the idea that explicit strategies produce rapid
improvements in performance involving prefrontal and pre-
motor cortex (23, 24, 26, 28, 30, 81, 87–89) and are highly sensi-
tive to error (90–94). All together, these results support the
theory that explicit components lie more in the fast processes
whereas implicit components lie more on the slower time-
scales. In our experiments the reward signal primarily drives
these explicit strategies, and therefore increases the speed of
early adaptation, but has little effect on the final level of
adaptation.

It is important to note that the control group did not dis-
play any evidence for explicit strategies in dual force field
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adaptation. This is in contrast to several studies that have
linked the fast process with explicit strategies. They suggest
that error-driven motor learning uses a fast prefrontal
explicit component that disappears as the slower cerebellar
implicit component is activated (29, 76, 77). Our results argue
against the possibility that the fast process fully represents
the explicit component, at least in dual force field adapta-
tion. However, it is also important to take into account our
experimental context, in which we used a highly effective or
direct cue that has been shown to drive implicit-only adapta-
tion (38). Therefore, it is conceivable to imagine this fast pro-
cess to be highly flexible, using some implicit adaptation
when possible, such as in the slow process, but enabling the
use of explicit strategies depending on the context. Indeed,
the presence of reward showed strong effects on explicit
learning both in the fast and slow processes, suggesting that
neither the fast nor the slow process can be considered fully
implicit or explicit. Indeed, we find clear evidence that
reward increases the fast retention rate through implicit
processes, in both the triple- and dual-rate models. This sup-
ports the existence of implicit components at any timescales
of adaptation, which would be volatile, or modulated by spe-
cific characteristics of the learning environment (95), such as
trial-to-trial consistency (35, 96) and the certainty of context
estimation (97, 98).

Several studies have suggested that reward primarily
affects retention rather than learning rates (15, 17–20). In
contrast to these results, our work shows that reward had a
very strong effect on the learning rates of both the slow and
fast processes. However, the effect of reward on the retention
rates is much less clear in our study. In the fast process,
reward increased both implicit and explicit components of
the retention rate. However, the reward produced a decrease
in the retention rate in the slow process and no effect on
retention in the ultraslow process. Taken all together, we
could think that, with an improvement in retention in the
fast process, reward enhances the overall retention rate. This
statement would support literature that showed a main
improvement in retention rate by reward (17, 18, 21, 35, 99–
101). However, an increase in the fast retention rate, with no
effect on the slower timescales, will only speed initial adap-
tation and have little effect on the final level of adaptation or
even retention of learned motor memories over much longer
timescales. It is possible that decreases in the slow retention
rate with rewardmight be related to our specific model of ad-
aptation and constraints on the parameters. However, it is
important to note that even the dual-rate model (Fig. 10),
with no limitations via constraints on the upper bound of
the retention rates of the slow process, showed a decrease in
the slow retention rate with reward. Another key considera-
tion is that our experimental design did not contain long
periods of channel trials where retention could be easily par-
ameterized, with the exception of the error-clamp phase.
However, our previous study (45) showed that a design
including additional long periods of channel trials to esti-
mate retention directly, and a longer error-clamp phase to
examine spontaneous recovery, did not show differences
from the results with a experimental design similar to the
one used in this study. Overall, these results might suggest
that reward does not fundamentally influence long-term
retention, at least in our experimental context.

This present study demonstrated the presence of both
explicit strategies and implicit adaptation for the fast and
the slow processes. This comes in contrast with multiple
studies that have suggested that the fast and slow processes
mainly reflect explicit and implicit components of adapta-
tion, respectively. It is essential to specify that this work has
been done with visuomotor rotation designs only, a design
that strongly exploits explicit strategies (29, 32, 77, 78, 102)
and shows extremely fast adaptation processes. In contrast,
force field adaptation appears to bemainly implicit in nature
(37, 38) and proceeds at a much slower scale, especially in
dual-adaptation design as used in the present study. This
makes it difficult to directly contrast the findings for multi-
ple reasons. For example, the fast process in visuomotor ad-
aptation usually refers to a strategic shift in the movement
direction, an explicit strategy that may not contribute to
force field adaptation at all. Additionally, the limited contri-
bution of implicit adaptation to visuomotor rotation studies
may make it much more difficult to detect any reward-based
effect on the component. However, interpretation of a
reward-based effect on implicit adaptation is more straight-
forward. A recent study by Sugiyama and colleagues (10) has
suggested that reward directly influences the learning rate to
maximize rewards, a metalearning approach, which explains
variations in implicit adaptation through rewards or punish-
ments. Although the exact neural location of such a process
is unclear, reward has been shown to affect both basal gan-
glia (103, 104), which play a role in both implicit (105–107)
and explicit (108–110) components, and cerebellar process-
ing, which has also shown an involvement of both implicit
(111–114) and explicit (78, 83, 115, 116) components. On the
whole, we believe that such implicit adaptation is combined
with a variety of explicit processes, which could include
strategies, increases in cocontraction, or other mechanisms
to reduce the perturbing effects of novel tasks.

All studies that model adaptation through learning rates
and retention rates are limited in their ability to fully distin-
guish between effects on the learning and retention rates. This
is because learning rates and retention rates interact to model
the total behavior, which means that the specific values are
dependent upon one another. Thus, a prioritized increase of
learning rate would automatically decrease its associated
retention rate to fit the overall data, in the absence of addi-
tional constraints on themodel. To counterbalance this limita-
tion, researchers have applied different constraints to these
parameters. It is important to carefully consider these upper
and lower constraints to keep the processes in time ranges spe-
cific to their associated timescale. For example, our results
find that reward produces a strong increase in the slow learn-
ing rate, which is coupled to a small decrease in its associated
slow retention rate. Also, the interactions between our coupled
parameters push certain parameters to the bounds, for exam-
ple with the slow learning rates in the control group. These
effects are present in all studies that use such models.
Therefore, most studies that model such interactions in learn-
ing and retention, either within or across timescales, include
phases within the experimental design in which specific com-
ponents contribute most to the overall motor output or behav-
ior. For example, deadaptation phases allow separation within
different timescales, and error-clamp phases allow for meas-
urements of the retention rate independent of learning rates.
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Nevertheless, the interactions across the processes are an in-
herent limitation of all of these studies and limit the ability to
fully capture the exact parameters of the model. Such effects
can also explain the differences that each study finds on the
effect of reward on different components of the adaptation
process. To explore such limitations, we also fit our experi-
mental data with the dual-rate model. The goal was to exam-
ine whether most of the parameters vary in a similar pattern
andwhether we would observe any difference between the pa-
rameters of the triple-rate model that are at the bounds. It is
important to note that it is likely to see differences in the spe-
cific fits provided by different models, as the constraints are
different for each model type. Here we see one major differ-
ence between the two models, with the slow learning rate in
the instructed channel showing a decrease in the reward con-
dition, which would suggest that the increase in learning rates
with reward are primarily explicit. However, we believe that
the triple-ratemodel is the better overall model for the data, as
our previous study (45) found that this model best explained
data in a similar experimental design using model compari-
son. Altogether, the similarities in the pattern of interactions
between parameters between the dual-rate and triple-rate
models support our overall results.

One common way to define the total amount of explicit
strategies is by taking the difference between the total amount
of adaptation and the amount of implicit adaptation (62, 63).
However, this idea that adaptation represents the summation
of an implicit and an explicit component has been challenged
by several studies showing that implicit and explicit do not
always sum up to total behavior (117, 118). However, as we find
only small contributions of the explicit component to the over-
all adaptation process in our study, even different approaches
to separating these components will likely produce similar
results. We therefore believe our method to be appropriate for
a first approach to assess the impact of reward on the implicit
and explicit components overmultiple timescales.

One very interesting finding is that explicit strategies con-
tribute to the contextual cue switch parameter, as can be seen
clearly for the control group. Here we find that there is a small
but significant increase in the switch parameter that is associ-
ated with explicit strategies. Contextual cues can be more or
less effective depending on their type (43), where ineffective
contextual cues require the presence of explicit strategies to
account for dual adaptation while effective cues drive implicit
adaptation directly (38). Here we used a visual location contex-
tual cue, chosen as it effectively supports dual adaptation (38,
43), which led to a very high switch parameter. That is, the use
of a highly effective cue improves the distinction between the
states associated with each force field, increasing the certainty
of a specific context. In such cases, participants easily estimate
the environment, switch appropriately between the condi-
tions, and selectively update the respective motor memory. In
our study, we found that the switch parameter was strongly
cued implicitly, but with a weak but clear explicit component.
In our study, where all switch parameters were very close to 1,
the small explicit component would contribute little to the
overall adaptation. However, dual adaptation in conditions
with less effective cues, which will produce little implicit
switching, may exhibit strong explicit contributions to the
switch parameter. That is, explicit contributions to switching
are likely accessible when needed. It is essential to further test

alternative cues to determine the differential contribution of
this explicit component tomotormemory selection.

The increase in contextual switch parameter for the reward
group compared to the control group indicates an additional
effect of reward on motor learning. The latter seems to
increase the switch weight for both implicit and explicit com-
ponents. With a stronger or more certain selection of motor
memory, we can claim that reward influences the probability
of selecting the adequate motor memory to update (35, 119).
We expect this effect of reward to be stronger when paired
with less effective contextual cues. Although the present
design does not allow us to determine whether reward affects
the switch parameter through explicit or implicit mecha-
nisms, we predict that reward would produce a strong explicit
contribution. However, this would need to be tested under
different conditions, with cues that do not produce such
strong contextual effects. Overall, we propose that an explicit
component might be used in dissociating contexts or inter-
preting the contextual cues and would be enhanced through
reward.

Overall, we investigated the contribution of reward to
implicit and explicit mechanisms of dual adaptation.
Although reward produced levels of final adaptation similar
to the control group, we found evidence of faster adaptation
to changing dynamics. Whereas control participants primar-
ily adapted from error-based adaptation through sensory
prediction errors (23, 27), reward participants benefited from
additional reward-based prediction error to execute the task.
Error-driven adaptation is an efficient and sufficient process
to adequately adapt to simultaneous daily life tasks (5).
However, our study highlights how reward modulates this
adaptation on different timescales, with faster adaptation to-
ward opposing force fields. Moreover, we could distinguish
explicit from implicit components, demonstrating that
reward increases explicit strategies to drive this faster learn-
ing. This explicit component is likely activated in reward-
based adaptation by different neural components, acting in-
dependently from error-driven learning (6).
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