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This study compared adaptation in novel force fields where trajecto-
ries were initially either stable or unstable to elucidate the processes
of learning novel skills and adapting to new environments. Subjects
learned to move in a null force field (NF), which was unexpectedly
changed either to a velocity-dependent force field (VF), which re-
sulted in perturbed but stable hand trajectories, or a position-depen-
dent divergent force field (DF), which resulted in unstable trajectories.
With practice, subjects learned to compensate for the perturbations
produced by both force fields. Adaptation was characterized by an
initial increase in the activation of all muscles followed by a gradual
reduction. The time course of the increase in activation was correlated
with a reduction in hand-path error for the DF but not for the VF.
Adaptation to the VF could have been achieved solely by formation of
an inverse dynamics model and adaptation to the DF solely by
impedance control. However, indices of learning, such as hand-path
error, joint torque, and electromyographic activation and deactivation
suggest that the CNS combined these processes during adaptation to
both force fields. Our results suggest that during the early phase of
learning there is an increase in endpoint stiffness that serves to reduce
hand-path error and provides additional stability, regardless of
whether the dynamics are stable or unstable. We suggest that the
motor control system utilizes an inverse dynamics model to learn the
mean dynamics and an impedance controller to assist in the formation
of the inverse dynamics model and to generate needed stability.

I N T R O D U C T I O N

Humans have exceptional abilities to move and interact with
objects in the environment. When faced with novel tasks, they
adapt to environmental disturbances in a way that indicates a
fundamental knowledge of the mechanics of the external world
(Conditt et al. 1997; Flanagan and Wing 1997; Flanagan et al.
2001; Krakauer et al. 1999; Lackner and Dizio 1994; Shad-
mehr and Mussa-Ivaldi 1994; Thoroughman and Shadmehr
1999). Studies of individuals performing goal-directed move-
ments in novel mechanical environments have shown that the
CNS acquires internal models of the external world (Kawato
1999). However, most adaptation studies have employed par-

adigms that involve stable interactions with the environment,
whereas many tasks that humans perform, particularly those
involving tool use, are inherently unstable (Rancourt and
Hogan 2001).

Adaptation to perturbations that do not compromise mechan-
ical stability appears to involve the acquisition of an inverse
dynamics model through feedback error learning (Kawato et al.
1987). However, conventional feedback error learning does not
address the issue of modifying mechanical impedance to coun-
teract mechanical instability, although this has been repeatedly
observed (Akazawa et al. 1983; Burdet et al. 2001a; De Serres
and Milner 1991; Milner 2002; Milner and Cloutier 1993,
1998; Milner et al. 1995).

When the dynamics do not induce mechanical instability,
changes in muscle activation patterns closely follow adaptive
changes in joint torques although there is excess activation,
particularly in the early stages of learning (Milner and Cloutier
1993; Thoroughman and Shadmehr 1999). Agonist-antagonist
muscle co-contraction was found to increase on exposure to the
novel dynamics and then decrease as learning progressed. The
ability to co-contract specific groups of muscles would permit
selective changes to the geometry of the endpoint stiffness
(Hogan 1985). Recently we were able to demonstrate that the
magnitude, shape, and orientation of the endpoint stiffness of
the arm can be controlled in a predictive way to compensate for
environmental instabilities (Burdet et al. 2001a).

Previous research has suggested the existence of two sepa-
rate motor control mechanisms: inverse dynamics models and
impedance control. An inverse dynamics model is a controller
that computes feedforward commands of the net joint torques
for movement based on the estimated effects of internal and
external dynamics. An impedance controller, in contrast, mod-
ifies the impedance of the limb by co-contraction of agonist
and antagonist muscles without changing net joint torque.
These two controllers can operate independently. While there
is no direct evidence for (or against) separate brain mecha-
nisms being implicated in these two types of control, they
perform different functions and therefore should be considered
as separate controllers. Different features of our visual expe-
rience, for example, color, contour orientation, motion, and
retinal disparities, are not independently encoded at the sensory
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level but are represented separately in the visual cortex (Ts’o
and Roe 1994). Functionally, these features of the visual world
provide very different information about our environment, and
so the brain processes each separately. It seems possible,
therefore that functionally distinct features of motor output
might be represented and processed in a similarly independent
fashion by the motor system. Some evidence already exists that
control of reciprocal activation and co-contraction occurs in
separate areas of the cortex (Humphrey and Reed 1983). Re-
cently both Takahashi et al. (2001) and Osu et al. (2002) have
provided evidence that inverse dynamics models and imped-
ance control operate as separate mechanisms for motor control.

The present study investigated adaptation to novel force
fields, in which trajectories were initially stable or unstable, to
compare features of inverse dynamics model formation and
impedance control. Adaptation to the force field, in which hand
trajectories were stable, could be achieved by simply modify-
ing joint torque. An inverse dynamics model alone was suffi-
cient to compensate for the perturbing effects of this force field
(Franklin et al. 2003). Adaptation to the other force field, in
which hand trajectories were unstable, required an increase in
the endpoint impedance of the arm, but no change in net joint
torque, i.e., only impedance control (Burdet et al. 2001a;
Franklin et al. 2003). However, we hypothesized that both of
these processes are generally active during learning. To test
this hypothesis, we analyzed the time course of changes in

muscle activation patterns as well as joint torques, during the
learning of novel force fields. In particular, we were interested
in comparing the extent to which the CNS used generalized
muscle co-contraction in the early stages of learning to increase
endpoint stiffness and how patterns of muscle activity were
later refined. Two parallel processes were identified from the
evolution profile of the muscle activation patterns. One was an
activation process involved in increasing the endpoint stiffness
of the arm by means of muscle co-contraction during the early
stages of learning. The other was a deactivation process, which
led to gradual reduction in muscle activity as learning pro-
gressed.

M E T H O D S

Five healthy individuals participated in the entire study (20–34 yr
of age; 1 female and 4 males; all right-handed). The institutional
ethics committee approved the experiments and the subjects gave
informed consent prior to participation.

Apparatus

Subjects sat in a chair and moved the parallel-link direct drive
air-magnet floating manipulandum (PFM) (Fig. 1) in a series of
forward reaching movements performed in the horizontal plane. Their
shoulders were held against the back of the chair by means of a
shoulder harness. The right forearm was securely coupled to the PFM

FIG. 1. A: experimental setup to study the adaptation to stable and unstable dynamics. Subjects were seated in a chair with their
shoulders restrained by a harness, and their hand and forearm firmly attached to the parallel-link direct drive air-magnet floating
manipulandum (PFM) with a thermoplastic splint. Reaching movements were performed from a start point ([x, y] � [0, 0.31] m)
to a target located at ([0, 0.56] m) relative to the subjects shoulder ([0, 0]) for a total movement length of 0.25 m. The conventions
for shoulder angle (�s) and elbow angle (�e) are shown. B: (top) force in the velocity-dependent force field (VF) plotted as a function
of hand velocity. The vectors indicate the direction and magnitude of the forces. In the VF, the force vector rotates and increases
in magnitude with velocity. Bottom: force vectors when hand trajectories ( � � � ) are slightly deviated from a straight line along the
y axis to the left and right. In the VF, the applied force vectors are similar despite trajectory variations. C: stability of the VF
environment. Before effect trials [random VF trials in a majority of null force field (NF) trials] with (U) and without (F) a force
perturbation (15 N for 25 ms) were recorded. The onset of the force perturbation (100 ms after start) is shown by the black arrow.
Both series of trajectories converge to the same path demonstrating the stability of the interaction between the arm and the VF.
D: (top) force in the divergent force field (DF) plotted as a function of the hand position. The force vector increases in magnitude
with the distance from the y axis. Bottom: force vectors when hand trajectories ( � � � ) are slightly deviated from a straight line along
the y axis to the left and right. The DF amplifies trajectory variations.
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using a rigid custom-molded thermoplastic cuff. The cuff immobilized
the wrist joint, permitting movement of only the shoulder and elbow
joints. The subjects’ right forearm rested on a support beam projecting
from the handle of the PFM. Motion was, therefore limited to a single
degree of freedom at the shoulder and at the elbow. The manipulan-
dum and setup are described in detail elsewhere (Gomi and Kawato
1996, 1997).

Force fields

The experiment examined trajectory and electromyographic (EMG)
adaptation in two force fields (Fig. 1, B and D): a velocity-dependent
force field (VF), in which hand trajectories were stable from the
outset, and a position-dependent (divergent) force field (DF), in which
hand trajectories were initially unstable. Results were compared with
those in a null field (NF). Details of the implementation and protocol
have been described elsewhere (Burdet et al. 1999, 2001a). Only a
general overview is given here. The force (Fx, Fy) (in N) exerted on
the hand by the robotic interface in the VF was implemented as

�Fx

Fy
�� ��13 �18

18 13 ��ẋ
ẏ� (1)

where (ẋ, ẏ) is the hand velocity (m/s) and the scaling factor, �, was
adjusted to the subject’s strength (2/3 � � �1). The stability of the
initial trajectories was tested by applying small perturbations during
before effect trials and comparing the resulting trajectories (Fig. 1C).
While subjects were performing movements in the NF, the force field
was switched to the VF on random trials (before effects). On some of
these trials, a brief triangular force pulse (25-ms duration) with an
amplitude of 15 N was applied to the hand 100 ms after movement
onset. Both the perturbed and unperturbed before effect trajectories
are perturbed by the force field. However, all trajectories converge
illustrating that they are stable. This result is consistent with the
defining characteristic of Lyapunov stability that the addition of a
small perturbation does not produce divergent behavior.

The DF produced a negative elastic force perpendicular to the target
direction with a value of zero along the y axis, i.e., no force was
exerted when trajectories followed the y axis, but the hand was pushed
away whenever it deviated from the y axis. The DF was implemented
as

�Fx

Fy
�� ��x

0 � (2)

where the x component of the hand position was measured relative to
the shoulder joint. � � (300 to 500; N/m) was adjusted for each
subject so that it was larger than the stiffness of the arm measured in
NF movements so as to produce instability. For safety reasons, the DF
force field was inactivated if the subjects’ trajectory deviated more
than 3 cm from the y-axis. Both force fields were inactivated once the
subject reached the target position.

Learning

All subjects practiced in the NF on at least 1 day prior to the
experiment. These training trials were used to accustom the subjects
to the equipment and to the movement speed and accuracy require-
ments. Subjects were randomly assigned to one of two groups. Group
1 adapted to the DF on one day and adapted to the VF on another day,
whereas group 2 adapted to the fields in reverse order.

Subjects first practiced in the NF until they had achieved 50
successful trials. Successful trials were those which ended inside a
2.5-cm-diameter target window within the prescribed time (0.6 �
0.1 s). All movements were recorded whether successful or not. The
movement distance was 0.25 m. Movements were self-paced so
subjects were able to rest between movements if they wished. At the
completion of 50 successful trials, the force field was activated. No

information was given to the subjects as to when the force field trials
would begin. Subjects then practiced in the force field until achieving
75 successful trials. They took a short break and then performed 100
more movements, 20 of which were random trials in the NF. The NF
trials were called after effects and were recorded to confirm that
subjects had adapted to the force field.

Hand-path errors

The adaptation to the force fields was quantified by calculating the
error relative to a straight line joining the centers of the start and target
circles. The absolute hand-path error

S��ex�� ��
t�t0

tf

�x�t���ẏ�t��dt (3)

represents the area between the actual movement path and the straight
line. The signed hand-path error, defined as

S�ex� ��
t�t0

tf

x�t��ẏ�t��dt (4)

is a measure of the mean directional extent by which the path deviates
from the straight line. Hand-path errors were calculated from the start
time, to (75 ms prior to crossing a hand-velocity threshold of 0.05
m/s), to the termination time, tf (when curvature exceeded 0.07
mm�1) (Pollick and Ishimura 1996).

The hand-path error for each subject was fit with an exponential
curve using a least-square error method. This fitted error was ex-
pressed as

S�t� � Ae�t/� � C (5)

where A is the gain of the exponential process, � is the time constant,
C is the constant error, and t refers to the trial number.

Torque estimation

Time varying muscle torque at the shoulder and elbow was com-
puted using the equations of motion for a two-link planar arm (cf.
Hollerbach and Flash 1982). However, the equations used also include
the contributions to joint torque from external forces applied at the
hand. The joint torque was calculated as

�s � �̈s�2X cos ��e� � Y � Z� � �̈e�X cos ��e� � Y� � �̇e
2X sin ��e�

� 2�̇s�̇eX sin ��e� � �l1 sin ��s� � l2 sin ��s � �e��Fx

� �l1 cos ��s� � l2 cos ��s � �e��Fy (6)

�e � �̈eY � �̈s�X cos ��e� � Y� � �̇s
2X sin ��e� � l2 sin ��s � �e�Fx

� l2 cos ��s � �e�Fy

where

X � m2l1cm2 � mclccmc

Y � I2 � m2cm2
2 � Ic � mccmc

2

Z � I1 � m1cm1
2 � �m2 � mc�l1

2

� is joint torque, � is joint angle (defined as in Fig. 1), I is moment of
inertia about the center of mass (cm) of the segment, l is segment
length, and m is segment mass. The subscript 1 refers to the upper
arm, 2 to the forearm, s to the shoulder, e to the elbow, and c to the
wrist cuff. The mass and inertia of the subject’s arm segments were
estimated from the weight and segment lengths of each subject based
on anthropometric scaling relations (Winter 1990).

Joint torque during learning was further quantified by estimating
the variation in torque on a particular trial relative to the joint torque
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after adaptation to the force field. The learned joint torque profile was
calculated using the mean of the last 20 successful trials during the
learning. The absolute torque error (��error�) represents the total dif-
ference between the joint torque on a particular trial and the mean
final joint torque both in terms of extent and timing. It is calculated as

�� i,error
j � � �

t�t0

tf

�� i
j�t� � � m

j �t��dt (7)

where �i is the joint torque on a given trial, �m is the mean joint torque
after adaptation, the superscript j refers to either the shoulder or elbow
joint, t0 is the time of movement onset, and tf is the end of the time of
interest. The torque error was estimated using a 1 s interval. The
absolute torque error was fit with an exponential curve (Eq. 5) using
least-squares similar to the hand-path errors.

To examine the development of the torque during the first few trials
in the DF, we used two measures of torque change relative to the
torque in the NF. The first measure, absolute torque development, was
calculated as in Eq. 7 but with �m referring to the mean joint torque
in the NF. A second measure termed signed torque development
(�develop) was calculated as

� i,develop
j � �

t�t0

tf

�� i
j�t� � � m

j �t��dt (8)

where �m again refers to the mean joint torque in the NF. Both the
absolute and signed torque development were calculated over the
initial 400 ms to avoid the influence of corrective movements or the
safety boundary.

Electromyography

Surface EMG activity of six arm muscles was recorded using pairs
of silver-silver chloride surface electrodes during the learning ses-
sions. The electrode locations were chosen to maximize the signal
from a particular muscle while avoiding cross-talk from other mus-
cles. The skin was cleansed with alcohol and prepared by rubbing in
electrode paste. This was removed with a dry cloth, and pre-gelled
electrodes were then attached to the skin with tape. The spacing
between the electrodes of each pair was approximately 2 cm. The
impedance of each electrode pair was tested to ensure that it was less
than 10 k�.

The activity of two monoarticular shoulder muscles, pectoralis
major and posterior deltoid, two biarticular muscles, biceps brachii
and long head of the triceps, and two monoarticular elbow muscles,
brachioradialis and lateral head of the triceps, was recorded. The
EMG signals were analog filtered at 25 Hz (high-pass) and 1.0 kHz
(low-pass) using a Nihon Kohden amplifier (MME-3132) and then
sampled at 2.0 kHz. All comparisons between force field EMG and
NF EMG involved data recorded on the same day without removal of
the electrodes. EMG was aligned on the movement onset and aver-
aged over 20 trials to visually compare changes that had occurred
during learning.

To quantify changes during learning, the root-mean-square (rms)
value of the EMG was calculated from 100 ms before movement onset
until 350 ms after movement onset to include all the early movement
associated activity. The muscle activity during this time will include
both the feedforward command and the reflex responses. We did not
extend the time interval further to avoid the confounding effects of
voluntary corrective actions that redirect the limb toward the target
after being perturbed by the force field during the early phase of
learning. In all cases, the recorded EMG data were characterized by an
initial increase in activity followed by a more gradual decrease. Both
processes appeared to be exponential. To compare the time course of
the changes in EMG with the time course of other kinematic and
dynamic parameters, we fit this data with a model. Our model ex-

pressed EMG as a function of trial number using a double exponential
with four free parameters

EMG�t� � A�1 � e��t/�1�� � B�1 � e��t/�2�� � C (9)

A and B represent the gains of the two exponential processes, �1 and
�2 represent the time constants, C is EMG at trial 0 (fixed as the mean
of the EMG in the NF), and t is the trial number. One process (the 1st
term) represents an exponential increase in EMG in response to
exposure to the force field. It is bounded by the maximal level of
activation that is possible (A � C) that has been shown to be signif-
icantly lower in co-contraction than reciprocal activation (Milner et al.
1995). The other process (the 2nd term) represents an exponential
decrease in EMG. For comparisons across subjects, the EMG was
normalized such that the mean NF EMG (C) was equal to a value of
one. This model corresponds well with the recent work of Osu et al.
(2002) that describes EMG activity during motor learning as a grad-
ually decreasing function with occasional increases or decreases that
are related to the error in previous trials. To provide further support
for the choice of this model, Akaike’s Information Criterion (AIC)
(Akaike 1974) was calculated for this and two simpler models (AP-
PENDIX).

The time course of the EMG was compared with the time course of
the hand-path error and absolute joint torque error. The hand-path
error was calculated by one of two methods. In the DF, the absolute
hand-path error S(�ex�), a measure of the area between the actual
movement path and the straight line joining the start and end targets,
was used. In the VF, the signed hand-path error S(ex), a measure of the
mean directional extent by which the path deviates from the straight
line, was used. Although different representations of the error were
used for the DF and VF, we could have used absolute hand-path error
for both DF and VF without changing any of the results or conclu-
sions. The hand-path error and joint error for each subject were fit
with an exponential curve using a least square error method. The time
constants of these changes were then compared with the time con-
stants of the change in EMG during the adaptation process using
t-tests with a significance level of 0.05. These statistics were per-
formed on the reciprocal of the time constants, i.e., the rates, to reduce
the variance of processes that exhibited little change over time (long
time constants). All time constants were significantly different from
zero using a t-test at the 0.05 level (P � 0.00001).

Timing of reflex responses

To find an appropriate interval for EMG analysis, the onset of
voluntary responses representing feedback correction in the VF and
DF was examined using before effects. Movements were performed in
the NF. On randomly selected trials this was changed to the force field
to elicit reflex and voluntary reactions to the imposed force field. A
total of 80 NF and 20 force field trials was recorded for each force
field. A comparison of the before effect EMG to that of the NF trials
allowed us to determine the onset of the corrective responses (Fig. 2).
These generally occurred more than 200 ms after the onset of move-
ment except in the case of the posterior deltoid muscle for which the
responses were faster. In this case, a small early corrective response
could be seen as early as 150 ms after the onset of movement.

R E S U L T S

The two force fields investigated in this study produced
distinctive perturbations of the trajectories prior to adaptation.
Initial trials in the VF consistently perturbed the trajectories to
the left (Fig. 3A), but subjects quickly learned to compensate
for the force field and soon began to make straighter move-
ments. By the 25th trial, the trajectories were relatively straight
and consistently reached the final target position. The trajec-
tories of later trials were similar. The mean signed hand-path
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error illustrates the large reduction in trajectory error over the
first 10 movements (Fig. 3B). The signed hand-path error was
reduced almost to zero, with relatively little variability, by
about trial 30. The absolute hand-path error changed in a
similar fashion. Movements in the DF were at first perturbed
either to the right or the left (Fig. 3C), depending on the initial
deviation in the path. However, again subjects were able to
adapt to the force field. After the 25th trial, subjects were able
to successfully complete the task on most trials, exhibiting
straight trajectories to the final target. After learning, trajecto-
ries in both the VF and DF were similar to NF trajectories. The
mean signed error across subjects and its SD achieved their
minimum value around trial 30 in the DF (Fig. 3D), similar to
the VF. The trajectory of the initial trials in the DF was not
perturbed as much as in the VF because of the safety zone.
Nevertheless, the mean absolute error decreased only gradually
over the first 75 trials. In both the VF and the DF, the signed
error tended to be negative, as overall, subjects made move-

ments which were slightly biased to the left. This is consistent
with NF movements that were also slightly biased to the left.

During learning, subjects adapted to the novel forces applied
by the VF by modifying the joint torques (Fig. 4, A–D). After
adaptation, the shoulder joint torque became an extensor torque
throughout the entire movement and increased to several times
the value in the NF trials. At the elbow, only a small change in
torque in the extensor direction, during the second half of the
movement, was required. To adapt to the VF, subjects gradu-
ally changed both the amplitude and shape of their joint torque
profile until they had compensated for the force field’s effects.
Early in learning, the torque varied both above and below the
final adaptation profile. In particular, early in the trial the
torque tended to overshoot the final torque profile, whereas
later in the movement, the opposite occurred. The early effect
is due to the force applied by the force field and the corre-
sponding changes in torque produced by changes in hand
trajectory. The later effect is likely the result of reflexive
feedback and voluntary correction in response to the distur-
bance. As subjects gained more experience performing move-
ments in this force field, the amplitude and shape of the torque
profile were adjusted until trajectories were no longer disturbed
by the force field. The variability in the joint torque was large
among the early trials (Fig. 4, A and B). As subjects modified
the torque profile, they also reduced the trial-to-trial variability
in the joint torque. The absolute torque error of all subjects
decreased quickly during learning with most of the adaptation
occurring in the first 30–40 trials (Fig. 4, C and D). However,
subjects continued to decrease joint torque errors by small
amounts as their performance became more skilled and less
variable. While subjects were able to reduce their hand-path
trajectory errors close to the final level by approximately the
20th trial during learning, changes in the joint torque profiles
indicate that further updating and refining of the feedforward
commands was still taking place throughout the learning pro-
cess.

Early trials in the DF were characterized by unstable trajec-
tories that varied either to the left or the right of the straight line
joining the initial and final targets. Adaptation to this force
field did not require a change in the net joint torques. The joint
torque after adaptation to the force field was similar to that in
the NF (Fig. 4, E and F). The moving average of the joint
torque (over 5 consecutive trials) during the learning process
was also quite similar to that in the NF, although the SD
remained high throughout the learning process. The computed
joint torque took into account the measured hand force so the
effect of any force applied to the hand by the DF due to small
fluctuations in the hand-path was included. Unlike the adapta-
tion to the VF, the absolute torque error remained fairly con-
stant (Fig. 4, G and H).

When subjects were initially presented with the DF, their
trajectories deviated to the left or the right of the target, and
they rarely completed the movement successfully to the target.
After learning, however, subjects were able to produce suc-
cessful movements to the target. Movement along the target
trajectory in the DF did not require any change in the joint
torque compared with the NF. However, during the first few
movements the joint torque varied greatly from trial to trial
(Fig. 5). In particular, it tended to vary from an extensor torque
to a flexor torque and back again. This alternating pattern,
which can also be seen in the signed torque development plots

FIG. 2. Timing of corrective (reflexive and voluntary) electromyographs
(EMG) in the VF (A) and DF (B). On random trials in a majority of NF
movements, either the VF or DF (in separate experiments) was applied to elicit
the initial corrective response to the field without learning (before effects). The
timing of the corrective responses could then be seen by comparing the force
field EMG (thick line) to the NF EMG (thin line). Each line represents the
mean of 10 trials that have been rectified and low-pass (zero phase) filtered
with a 5th-order 100-Hz cutoff Butterworth filter. Traces are shown for the
muscle with the fastest response (posterior deltoid) and its antagonist muscle
(pectoralis major). Except for the posterior deltoid muscle in the VF, no
corrective EMG was seen prior to 200 ms, and in most muscles no activity was
seen prior to 350 ms.
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FIG. 3. Movements in the VF (A) and DF
(C). Movements are shown for the initial
movements in the force field (trials 1–6), the
early portion of learning (trials 25–30), and
the late portion of learning (trials 65–70). The
black lines on either side of trials 1–6 for the
DF indicate the safety boundary, outside of
which the field was turned off for safety rea-
sons. B and D: the bar graphs represent
signed hand-path error (left) and absolute
hand-path error (right) averaged over all sub-
jects during the first 75 trials of learning in
the VF (B) and DF (D). The middle dotted
line indicates the mean values smoothed with
an 8 point moving average. The solid lines
(—) represent the SD about this mean (5
point moving average).
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FIG. 4. Change in shoulder and elbow
torque during learning in the VF (left) and DF
(right). VF (left), A: mean shoulder torque
during 20 NF movements (gray dotted line),
during 20 movements after adaptation to the
VF (black dotted line) and during the adap-
tation process (5 trials; solid gray line) along
with SDs (light gray area). Individual plots
are shown for 5 separate sets of trials during
the learning process. Data are shown for 1
subject. B: mean elbow torque during learn-
ing in the VF. Data are plotted as in A. C:
absolute shoulder torque error averaged over
all subjects during learning. Absolute shoul-
der torque is the summation of the difference
between the torque on a given trial and the
mean of 20 successful trials after full adapta-
tion to the force field. D: absolute elbow
torque error during learning averaged over all
subjects. DF (right). E: mean shoulder torque
during 20 NF movements (gray dotted line),
during 20 movements after adaptation to the
DF (black dotted line) and during the adap-
tation process (5 trials; solid gray line) along
with SDs (light gray area). Individual plots
are shown for 5 separate sets of trials during
the learning process. F: Mean elbow torque
during learning in the DF. Data are plotted as
in E. G: absolute shoulder torque error aver-
aged over all subjects during learning. H:
absolute elbow torque error during learning
averaged over all subjects.
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(Fig. 5, C and D), did not necessarily occur on successive trials
but was consistently seen on some time scale for every subject.
The mean absolute torque development across all subjects
increased progressively for the first six trials (Fig. 5, E and F).
This occurred both for shoulder and elbow torque. An ANOVA
was performed comparing the first three trials (trials 1–3) to the
next three trials (trials 4–6) with subjects as a random variable.
The mean absolute torque development for the second three
trials was found to be significantly larger at the 0.05 level than
for the first three trials for both the shoulder torque (P � 0.033)
and the elbow torque (0.001). This indicates that subjects
initially responded to the disturbing effects of the force field by
trying to modify the net joint torques to reduce the error.
However, changing the net joint torques modifies the hand-
path trajectory, which generally causes larger perturbing forces
to be applied by the DF.

Adaptation in the VF required a modification of the net joint
torques at the shoulder and elbow. Specifically, adaptation
produced a change in net extensor joint torque at the shoulder
throughout the movement and a small extensor moment at the
elbow late in the movement. Therefore we would expect to see
increased activity in muscles contributing to these joint
torques, particularly the posterior deltoid and long head of the

triceps. After adaptation to the DF, the joint torques were not
different from those in the NF. Instead, as we have shown
previously, subjects modified the endpoint impedance of the
limb (Burdet et al. 2001a). We therefore expected to see
increased activity in one or more muscle pairs contributing to
increased co-contraction. The expected changes in muscle ac-
tivation patterns were confirmed from the EMG after learning
(Fig. 6). In the VF, the EMG increased predominantly in the
posterior deltoid and long head of the triceps muscles, the two
muscles contributing the extensor torque at the shoulder
needed to compensate for the force field. In contrast, in the DF
the muscle activity increased in both muscles of all antagonist
pairs. Because the endpoint forces and joint torques were the
same in the DF and the NF, this increase in muscle activation
represented balanced co-contraction.

After subjects experienced the VF for the first time, the
muscle activity increased dramatically over the next few trials
particularly for the posterior deltoid and long head of the
triceps. This initial increase in EMG activity gradually dimin-
ished as learning proceeded. The change in EMG activity as
learning progressed was fit with the double exponential func-
tion of Eq. 9, which represents EMG as a function of trial
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FIG. 6. Muscle activity after adaptation to the VF (A) and DF (B) shown for
1 subject. The EMG activity of 6 arm muscles is shown for the NF (gray),
compared with either the VF (A) or DF (B) (solid black). The EMG was
smoothed using a 75-point (37 ms) smoothing routine and averaged over 20
successful trials. The EMG is expressed in arbitrary units where the mean NF
EMG level for each muscle is equal in A and B.

A B

D

F

C

E

FIG. 5. Early changes in shoulder and elbow torque during learning in the
DF. A and B: estimated shoulder torque (A) and elbow torque (B) during the 1st
6 trials of learning in the DF for 1 subject (colored lines). The level of joint
torque during movements in the NF is shown with a black dotted line (mean
of 20 successful trials). C and D: the signed torque error for the trials shown
in A and B, respectively. Signed torque development is the sum of the
difference between the torque on a given trial and the mean torque in the NF
over the first 400 ms after movement onset. E and F: the absolute torque
development for the 1st 6 trials averaged across all subjects. Absolute torque
development is the sum of the absolute difference between the torque on a
given trial and the mean torque in the NF (1st 400 ms after movement onset).
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number. In the following sections, we present detailed analysis
of the EMG from the interval of �100 to 350 ms from the start
of movement. However, other intervals were also examined
[(�100–200 ms), (250–350 ms), (�100–600 ms)] and all
gave similar results. To illustrate the effect of the interval
chosen for EMG analysis, the fitted curves for EMG activity
using eight different time intervals were calculated for the long
head of the triceps (Fig. 7). Although the rms EMG varies
depending on the interval chosen, the overall trend for the way
in which the activity changed on successive trials and the rate
constants for the change in activity varied little. From this
figure, we can see that the choice of interval is not critical. Our
analysis using the interval �100–350 ms included both pre-
programmed feedforward motor commands and feedback re-
sponses to the perturbations. However, based on before effect
EMG (Fig. 2), we determined that the earliest response oc-
curred at about 150 ms after movement start for the long head
of the triceps and posterior deltoid, but for most muscles, no
significant change in activity was seen prior to 350 ms. Anal-
ysis over this shorter interval (�100–200 ms) for the muscles
that exhibited early responses gave similar results to the longer
interval.

The evolution of muscle activity with practice in the VF is
shown for one subject in Fig. 8. There was an increase in the
EMG for all six muscles during the first few trials. A t-test was
performed comparing the rms EMG of trials 2–21 to 20 trials
in the NF for each muscle for each subject. Twenty-seven of
the 30 comparisons showed significant increases in the rms
EMG at the 0.01 significance level, indicating that the activity
of all muscles increased early in learning. The peak EMG
activity appeared to occur between the 3rd and 10th trials. With
further practice, the EMG gradually decreased in all muscles to
an asymptotic level. Similar to Fig. 6, the final rms EMG after
adaptation was approximately the same as that of the NF for all
muscles except those producing extensor torque at the shoul-
der. These muscles, the posterior deltoid and the long head of
the triceps, compensated for the force applied by the VF. The
actual difference after learning was tested using the same
technique as for early learning. A t-test was used to compare
the rms EMG of the final 20 trials in the VF to 20 trials in the
NF for each muscle for each subject with the significance level
set at 0.01. For the posterior deltoid and long head of the

triceps, all comparisons (10/10) were significantly larger after
learning compared with the NF. In the case of the lateral
triceps, four of five comparisons were significantly larger after
learning compared with in the NF. However, in the other three
muscles, only 8 of the 15 comparisons were significantly larger
in the force field.

The variation in EMG activity over trials was best fit by a
double exponential process (Eq. 9). The results for all subjects
are presented in Table 1. The activation and deactivation rates
for each muscle were compared with the rate of reduction of
the signed hand-path error. In the VF, subjects quickly adapted
to the disturbing effects of the force field and reduced their
hand-path error by two orders of magnitude within about 10
trials. Activation either led or paralleled hand-path error reduc-
tion and was characterized by a relatively short time constant,
�1. The deactivation time constant, �2, was much longer. For
three muscles (posterior deltoid, long head of the triceps, and
brachioradialis), activation occurred more rapidly than hand-
path error reduction (P � 0.012). Both the posterior deltoid and
long head of the triceps contribute to the necessary increase in
shoulder extensor torque. The activity of the brachioradialis
acts to counteract the extensor torque at the elbow resulting
from the increase in activity of the long head of triceps. The
activity of the remaining muscles increased more slowly, at a
rate not significantly different from the rate of hand-path error
reduction (P � 0.45). The activation of both sets of muscle
groups was also faster than the reduction in absolute torque
error at either the shoulder (P � 0.008; P � 0.026) or elbow
joint (P � 0.008; P � 0.016). Deactivation occurred at a
similar rate in all muscles and proceeded much more slowly
than either activation (P � 0.007), hand-path error reduction
(P � 0.0001), reduction in absolute shoulder torque error (P �

FIG. 7. Model fits to activity of the triceps long head during learning in the
VF for various intervals. Fits for 8 different time intervals are shown (Eq. 9)
to illustrate that the parameters of the model are relatively insensitive to the
time interval chosen. The parameters A, B and the NF level have been
normalized across all intervals so that the time constants can be examined.
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0.012) or reduction in absolute elbow torque error (P �
0.0001). The fact that the reduction in hand-path error occurred
faster than muscle deactivation indicates that subjects only
gradually reduced their reliance on increased impedance to
resist the force field even after hand-path error had been
reduced to NF values. The largest increase in the activation
process (A in Eq. 9) was seen for the posterior deltoid, followed
by the long head of the triceps. However, all muscles showed
a significant increase in muscle activation. The final level of
adaptation, expressed as an increase from NF values (A-B in
Eq. 9), indicates that the activation of most muscles, posterior
deltoid and long head of the triceps being the exceptions, was
reduced to near NF levels. The rates of the decrease in absolute
shoulder and elbow torque errors were not found to be signif-
icantly different from each other (P � 0.4062). The rate of
decrease in the absolute elbow torque error was found to be
significantly slower than that of hand-path error (P � 0.041).
However, the shoulder torque error was not found to be sig-
nificantly different from the hand-path error at a level of 0.05
(P � 0.063).

During adaptation to the DF, there was also an initial in-
crease in EMG activity of all muscles, which then gradually
declined. The initial increase in EMG activity reached its peak
after 20–40 trials. A t-test was performed comparing the rms
EMG of trials 11–30 to 20 trials in the NF for each muscle for
each subject. Twenty-seven of the 30 comparisons showed
significant increases in the rms EMG at the 0.01 significance
level indicating that all muscles increased activity early in
learning. The EMG then gradually declined to an asymptotic
level. Again, a t-test was performed comparing the rms EMG
of the last 20 trials in the DF to 20 trials in the NF for each
muscle for each subject. Twenty-six of the 30 comparisons
showed a significant increase in the rms EMG at the 0.01
significance level after adaptation. The initial increase in acti-
vation, which represented co-contraction, occurred at a similar

rate in all muscles. The ensuing deactivation proceeded much
more slowly. This suggests that the selective control of end-
point impedance was a slow process, which likely involved
tuning of the relative activation of muscle pairs. The double
exponential model of Eq. 9 was again able to accurately
capture the variation in EMG activity over the period of adap-
tation to the DF (Fig. 9).

TABLE 1. Summary of the least-square fit to the adaptation of hand-path error and EMG during learning in the VF and DF

A �1 B �2 A-B

A. Adaptation to VF

EMG
Pectoralis major 1.08 � 1.00 2.89 � 3.91 0.97 � 0.95 22.27 � 11.85 0.11 � 0.22
Posterior deltoid 8.17 � 6.14 1.49 � 2.10 5.90 � 3.44 17.69 � 5.92 2.27 � 2.71
Biceps brachii 1.84 � 1.59 5.42 � 3.55 1.74 � 1.31 21.20 � 17.50 0.11 � 0.35
Triceps long head 3.75 � 2.24 1.74 � 1.66 3.31 � 1.88 27.16 � 19.55 0.44 � 0.70
Brachioradialis 1.51 � 1.03 0.96 � 0.87 1.32 � 0.86 29.16 � 25.39 0.20 � 0.20
Triceps lateral head 1.39 � 1.01 3.20 � 3.00 1.30 � 0.92 22.57 � 19.95 0.09 � 0.12

Handpath error 3.32 � 2.21
Torque error

Shoulder 6.85 � 14.51
Elbow 9.78 � 11.39

B. Adaptation to DF

EMG
Pectoralis major 2.06 � 3.08 6.51 � 5.69 1.46 � 2.15 26.68 � 18.32 0.60 � 0.93
Posterior deltoid 4.14 � 2.17 8.09 � 5.06 3.39 � 1.72 58.40 � 54.57 0.72 � 0.70
Biceps brachii 7.40 � 7.93 13.75 � 13.53 6.35 � 6.15 73.60 � 66.55 1.05 � 1.95
Triceps long head 5.92 � 7.36 17.53 � 22.15 4.53 � 5.20 73.45 � 93.11 1.39 � 2.31
Brachioradialis 5.21 � 6.34 6.43 � 1.72 4.61 � 6.67 65.02 � 67.98 0.60 � 0.67
Triceps lateral head 2.90 � 1.07 8.92 � 5.83 1.98 � 0.71 21.06 � 13.08 0.92 � 0.49

Hand-path error 13.65 � 15.55

Values for the gain of the two exponential functions (A, B, and A-B) are expressed relative to the null force field (NF) value (normalized to 1). The mean �
SD over all subjects is shown for each muscle and for the hand-path error. EMG, electromyograph; VF and DF, velocity- and position-dependent (divergent)
force field.
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The activation and deactivation time courses in the DF for
each muscle were compared with the time course of the hand-
path error reduction. Activation proceeded at a similar rate to
hand-path error reduction (P � 0.59), whereas deactivation
proceeded much more slowly (P � 0.0001). The time courses
were similar for the six muscles. As in the case of the VF,
activation was significantly faster than deactivation (P �
0.0001). Values for all parameters are shown in Table 1. The
gain of the activation process (A) is larger for the biarticular
muscles than the single joint elbow or shoulder muscles. In-
terestingly, the deactivation process (B) also is largest for the
biarticular muscles, even though the final level after adaptation
(expressed as an increase from NF values; A-B) shows the
largest increase for the biarticular muscles.

D I S C U S S I O N

This study compared the learning processes during adapta-
tion to a force field in which hand trajectories were stable and
one in which they were initially unstable. The force fields were
designed so that adaptation could be achieved solely by a
change in the net joint torques in the stable case, in contrast to
the unstable case, which required only a change in the limb
impedance. Initial trajectories were consistently displaced in
the same direction in the stable case (VF), but subjects quickly
reduced their hand-path error and learned to produce straight
movements. The modification of joint torques occurred more
slowly. The adaptation in muscle activity as learning pro-
gressed was well described by concurrent activation and deac-
tivation processes. Learning was characterized by a rapid in-
crease in activation of the muscles needed to compensate for
the environmental force together with generalized co-contrac-
tion, which lagged slightly behind. This generalized co-con-
traction was later reduced, but much more slowly than the
reduction of hand-path error. In the unstable case (DF), initial

trajectories were displaced in both directions, usually ending
outside a safety boundary. With practice, subjects were able to
reduce the hand-path error and learned to produce straight
movements to the final target location. The mean joint torques
changed relatively little during the adaptation process. How-
ever, the early trials were characterized by alternating errors in
joint torque from trial to trial and increasing absolute joint
torque. Again, the modification of muscle activity was well
described by a concurrent activation and deactivation process.
Differential co-contraction occurred rapidly and matched the
rate of hand-path error reduction. The later reduction in muscle
activity occurred slowly, gradually falling to a level where
endpoint stiffness would guarantee a normal safety margin for
stability (Burdet et al. 2001a). These processes are summarized
in Fig. 10.

Learning in the VF

The VF is similar to previously studied dynamical environ-
ments in which it has been suggested that inverse dynamics
models are formed (Conditt et al.1997; Flanagan and Wing
1997; Flanagan et al. 2001; Krakauer et al. 1999; Lackner and
Dizio 1994; Shadmehr and Mussa-Ivaldi 1994; Thoroughman
and Shadmehr 1999). Early in learning, the activation of three
muscles (posterior deltoid, long head of the triceps, and bra-
chioradialis) increased rapidly. The increased activity may
have comprised reflex activity arising from muscle stretch,
voluntarily activation during the movement to correct for the
initial displacement caused by the force field and predictive
activation to counteract the expected force. The posterior del-
toid and long head of the triceps contributed to the increase in
shoulder extensor torque necessary to counteract the VF while
the brachioradialis would have counteracted the extensor
torque at the elbow resulting from the increase in activity of the
long head of triceps. This adaptation is consistent with the

FIG. 10. Summary of the time course of events taking place during learning in the VF (A) and DF (B). Asterisks indicate a
significance difference in time constants at the 0.05 level. A: VF. Initially, fast increases are seen in the stretched muscles suggesting
quick onset of internal dynamics model formation. This is followed by the increase in activity of antagonist muscles (onset of
impedance controller) and reduction in kinematic error. Later, the joint torque error is reduced, which would indicate the complete
learning of the internal dynamics model (IDM). Finally muscle co-contraction is reduced to minimal levels by the impedance
controller. B: DF. Early trials in the DF are characterized by alternation in the direction of hand-path error and joint torque which
indicates that development of an IDM using feedback error learning is being attempted. Also, during the early trials, increased
co-contraction occurs in all muscles (impedance control) causing a reduction in kinematic error. Finally, the muscle activity is
reduced to minimize metabolic activity while ensuring the stability of the movements. This results in a selective control of the
endpoint impedance.
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development of an inverse dynamics model by means of feed-
back error learning (Kawato et al. 1987).

In addition, muscle activity increased due to agonist-antag-
onist co-contraction, which can be inferred from the increase in
the activity of the remaining muscles. This co-contraction acts
to increase the endpoint stiffness of the arm. Increased co-
contraction during the learning of novel force fields is certainly
not a new finding. Thoroughman and Shadmehr (1999) have
also shown increased co-contraction during adaptation to stable
dynamics, which they termed wasted contraction. However, we
suggest that this increased contraction of antagonist muscles is
not wasted but performs an essential role in the learning of
novel dynamics by stabilizing the limb, resisting the disturbing
effects of the force field, and allowing for the refinement of the
feedforward inverse dynamics model (Osu et al. 2002). With
improvement in the inverse dynamics model, co-contraction
(limb stiffness) was reduced. This was associated with a slow
deactivation process, which resulted in the activity of most
muscles returning close to NF levels.

Learning in the DF

When subjects initially performed movements in the DF,
their movements varied to either side of the mid-line from one
trial to the next. This is evident from the joint torques, which
alternated between extensor and flexor moments. The torque,
relative to the NF, increased on each of the first six trials. This
suggests that the subjects may have been attempting to incor-
porate the error information from the previous trial into the
feedforward command for the next movement as would occur
during feedback error learning of an inverse dynamics model.
In the case of stable dynamics, this method works well and
allows for quick adaptation. In contrast, this mechanism alone
will not succeed when dynamics are unstable (Burdet et al.
2001b). If error information from the first trial was used to
update the feedforward command for the next movement, that
movement would be made to the opposite side of the mid-line
of the force field because subjects would produce a force
opposite to direction of the previous disturbance. The resulting
error would be larger and opposite in sign to the previous error.
As this process continued, joint torque would tend to increase
and alternate between extensor and flexor moments, although
the degree to which this would occur would depend on param-
eters such as the learning factor (cf. Scheidt et al. 2001) and the
magnitude of motor noise.

However, early in the learning period there was an increase
in agonist-antagonist co-contraction, which can be interpreted
as an increase in endpoint stiffness. The hand-path error was
reduced at about the same rate as the increase in stiffness. This
provides evidence that the increased stiffness directly contrib-
uted to the reduction in hand-path error. This is not unexpected
because increased endpoint stiffness counteracts the instability
of the DF.

As the subject became more successful in counteracting the
instability of the DF, the EMG was gradually reduced. This
reduction in superfluous co-contraction would reduce meta-
bolic energy requirements and possibly also reduce variability
in motor output that tends to increase with muscle activity
(Clancy and Hogan 1995; Harris and Wolpert 1998; van Galen
and van Huygevoort 2000). We suggest that an interplay be-
tween two competitive processes, increased muscle activation

in response to trajectory errors, and a drive to minimize muscle
activation necessary to perform the task, results in a selective
control of endpoint impedance as seen after learning in the DF
(Burdet et al. 2001a; Franklin et al. 2003). The final level of
muscle activity, relative to the NF, is expressed as A-B (Table
1). The largest values are found for the biarticular muscles
(long head of the triceps and biceps brachii), indicating that
these muscles may play the most prominent role in the selec-
tive control of the endpoint impedance in the DF.

Impedance controller

It is clear that the CNS is able to control the impedance of
the limb. Increased muscle activity and stiffness has been seen
during adaptation to many types of environments (De Serres
and Milner 1991; Milner 2002; Milner and Cloutier 1993;
Takahashi et al. 2001; Thoroughman and Shadmehr 1999).
More recently, we have shown that this impedance can be
directionally tuned to the environment (Burdet et al. 2001a).
However, it is not yet clear how the CNS produces optimally
oriented limb impedance. We propose the existence of an
impedance controller that employs a fast activation process in
response to error signals and a slower deactivation process.
This controller will initially increase the impedance of the limb
during adaptation to any novel dynamics. It will also attempt to
minimize the activation of all muscles. By employing these
two opposing processes, the initial high-impedance will even-
tually be reduced to a minimal level necessary for stability.

It appears that the CNS engages a similar process of imped-
ance control during the initial period of adaptation whether
trajectories are inherently stable or unstable. When an addi-
tional force must be applied to the environment, as in the case
of the VF, there is a natural increase in limb impedance due to
muscle activation (Franklin et al. 2003). Even though stability
may be guaranteed by this naturally occurring impedance, the
CNS chooses to augment it by co-contraction during the ear-
liest phase of learning. The superfluous impedance is later
eliminated once the inverse dynamics model had been ac-
quired. However, when the naturally occurring impedance is
insufficient to provide stability, as in the case of the DF, the
impedance controller generates a global increase in stiffness,
which is selectively reduced as the optimal stiffness geometry
is determined (Franklin et al. 2003). Takahashi et al. (2001)
have also suggested that impedance control can coexist with
the formation of inverse dynamics models for control. Robotic
implementations for learning novel tasks often use high im-
pedance as a method of achieving faster learning (Katayama et
al. 1998; Sanger 1994). The increased stiffness can reduce the
disturbing effects of the novel dynamics to provide better
tracking of a desired trajectory during the early stages of
learning. The dynamics during learning are then closer to the
desired final dynamics, which will increase the speed of learn-
ing.

Learning rates for impedance control and inverse dynamics
model formation

The inverse dynamics model learning and impedance learn-
ing occur simultaneously, although the former appears to pro-
ceed at a faster rate than the latter. Several lines of evidence
support this conclusion. Learning in the VF, ultimately realized
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by inverse dynamics model formation, is faster than learning in
the DF, achieved by impedance control. Deactivation of all
muscles (late phase of impedance learning) is slower than
acquisition of accurate torque profiles (late phase of inverse
dynamics model learning) in the VF. Activation of all muscles
in the DF (early phase of impedance learning) is slower than
activation of the posterior deltoid and the triceps long head in
the VF (early phase of inverse dynamics model learning). In
summary, the early phase of inverse dynamics model learning
is almost simultaneous or slightly faster than the early phase of
impedance learning, which is much faster than the late phase of
inverse dynamics model learning, which, in turn, is slightly
faster than the late phase of impedance learning. The interre-
lation of these two learning processes suggests that they could
be unified in a single model.

Unified model for motor learning

The following natural extension of feedback error learning
could coherently unify the two learning processes and at least
qualitatively reproduce our results as well as other recent data
on motor learning (Burdet et al. 2001a; Osu et al. 2002). First,
centrally generated feedforward motor commands would com-
prise both a reciprocal component for agonist and antagonist
muscle pairs (difference in muscle activation similar to net
joint torque) and a co-activation component (summation of
agonist and antagonist muscle activation similar to joint stiff-
ness). This concept originated with Feldman and has been
elaborated by his collaborators (Feldman 1980 a,b; Gribble et
al. 1998; Latash 1992; Levin et al. 1992). Second, the feedfor-
ward co-activation signal to antagonists should increase on
trials following perturbation of the hand path during early
learning even when only agonist muscles are stretched. This
hypothesis is required to account for activation of pectoralis
major up to the fifth trial in the VF (Fig. 8) despite the fact that
it was not stretched, as all the trajectories deviated to the left
(Fig. 3A, trials 1–6). This mechanism also contributes to the
co-activation of all muscles in the DF because trajectories
deviate to left on some trials and to the right on others. Third,
the feedforward co-activation signal decays with a large time
constant as manifested by the deactivation time constants of all
muscles. We are currently developing methods to quantita-
tively evaluate this conceptual model both experimentally and
by means of computer simulations.

A P P E N D I X

The change of EMG during the learning in the force fields was
characterized by an initial increase and a gradual decrease. We there-
fore modeled this as a double-exponential process with two functions,
one contributing to each of these changes. To assess the accuracy of
this model, we compared the residuals of three related models using
Akaike’s information criterion (Akaike 1974). The EMG at trial 0 was
set equal to the mean EMG in the NF prior to presentation of the force
field. In the first model, EMG was expressed as a linear function of
trial number. In the second model, EMG was expressed as an expo-
nential function of trial number as used previously to characterize
hand-path error (Burdet et al. 2001a; Flanagan et al. 1999) and
suggested by the results of Thoroughman and Shadmehr (1999). The
third model expressed EMG as a double exponential function of trial
number with four free parameters (Eq. 9).

The three models were fit to the rms EMG of consecutive trials
during learning in both the VF and DF. Because increasing the

number of parameters of a model can over fit the data without adding
any information, the residuals were used in Akaike’s information
criterion (AIC) (Akaike 1974) to determine if the added parameters of
the double-exponential function were justified by explaining more of
the variation in the data. To calculate a single representative value of
AIC for each model, the data from six muscles and five subjects were
combined. Because the EMG magnitude varied among muscles and
subjects, the data were first normalized by dividing the residual by the
sum of the fitted EMG data for each muscle and subject. The resid-
uals, now expressed as a function of how well they fit the data, were
then combined to calculate a single AIC value

AIC � N�log 2	� 1

sub �
i�1

sub 1

mus �
j�1

mus


̂i,j
2 ��1��2(m � 1) (A1)

where N is the total number of data points, m is the number of fitted
parameters in the equation multiplied by the number of muscles and
subjects, and 
̂2

i,j is the integrated squared error in EMG modeling for
the jth muscle of the ith subject. This was performed separately for VF
and DF data to determine which model fit the data for learning in each
force field most appropriately.

The AIC values were calculated for each model in both the VF and
the DF. In both fields, the double-exponential model fit the data better.
In the VF, the lowest AIC was obtained for the double-exponential
model (42,696). This was 50 less than AIC for the single exponential
model and 2,023 less than AIC for the linear model. A difference of
more than 2 is usually considered statistically significant (Sakamoto et
al. 1986). The results for the DF were similar, with the lowest AIC
(45,374) for the double exponential model, which was 209 less than
AIC of the single exponential model and 1,521 less than AIC for the
linear model. This supports our choice of the double-exponential
model, comprising an activation and a deactivation process, to de-
scribe adaptation to both the VF and DF dynamics.
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