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Franklin, David W., Udell So, Mitsuo Kawato, and Theodore E.
Milner. Impedance control balances stability with metabolically
costly muscle activation. J Neurophysiol 92: 3097–3105, 2004. First
published June 16, 2004; 10.1152/jn.00364.2004. Humans are able to
stabilize their movements in environments with unstable dynamics by
selectively modifying arm impedance independently of force and
torque. We further investigated adaptation to unstable dynamics to
determine whether the CNS maintains a constant overall level of
stability as the instability of the environmental dynamics is varied.
Subjects performed reaching movements in unstable force fields of
varying strength, generated by a robotic manipulator. Although the
force fields disrupted the initial movements, subjects were able to
adapt to the novel dynamics and learned to produce straight trajecto-
ries. After adaptation, the endpoint stiffness of the arm was measured
at the midpoint of the movement. The stiffness had been selectively
modified in the direction of the instability. The stiffness in the stable
direction was relatively unchanged from that measured during move-
ments in a null force field prior to exposure to the unstable force field.
This impedance modification was achieved without changes in force
and torque. The overall stiffness of the arm and environment in the
direction of instability was adapted to the force field strength such that
it remained equivalent to that of the null force field. This suggests that
the CNS attempts both to maintain a minimum level of stability and
minimize energy expenditure.

I N T R O D U C T I O N

Humans constantly interact with their environment in every-
day life. For example, to drink from a cup, a person must
successfully reach for the cup, pick it up, and bring it to his/her
mouth without spilling the contents. To successfully complete
this activity, the person must be able to compensate for the
forces exerted on the arm by the movement of the cup and its
contents. It is widely accepted that the human CNS learns
about the dynamics of the physical world, and in particular,
learns to compensate for externally imposed forces on the arm
during movements (Conditt et al. 1997; Krakauer et al. 1999;
Lackner and Dizio 1994; Shadmehr and Mussa-Ivaldi 1994).

Previous studies have provided evidence that the CNS learns
an internal model of the interaction dynamics when movements
are performed in novel mechanical environments (Kawato
1999). That is, the CNS obtains a neural representation of the
relationship between motor command and actual movement.
However, these studies focused primarily on stable interactions
with the environment.

Relatively few studies have investigated adaptation to un-
stable interactions. Unstable interactions are as important as

stable interactions since they routinely occur in daily activities
that involve the manipulation of tools and utensils (Rancourt
and Hogan 2001). For example, the action of an artist using a
hammer and chisel to make a sculpture is inherently unstable.
Small forces in the direction parallel to the surface of the
material being sculpted can cause the chisel to slip. The chisel
must be struck squarely with the head of the hammer or the
resulting force may be misdirected and mar the artist’s work.
However, with practice, humans can acquire the skill to com-
pensate for such unstable interactions.

The viscoelastic properties of muscle play an important role in
motor control as they respond instantaneously to disturbances and
stabilize movements. The greater the arm’s viscoelastic imped-
ance, the more it resists disturbances that perturb it away from its
equilibrium position or intended trajectory. The ability to control
viscoelastic impedance is particularly important for stabilizing
movements in unstable environments (Burdet et al. 2001) or
unpredictable situations (Takahashi et al. 2001).

Hogan (1985) hypothesized that impedance might be selec-
tively controlled by the CNS, and we recently verified that
hypothesis. We showed that the endpoint stiffness of the arm
could be tuned to the direction of an instability (Burdet et al.
2001; Franklin et al. 2003a). Such selective change in stiffness
orientation toward the direction of an instability is likely
achieved by changes in the feedforward muscle activation, i.e.,
by controlling the activation level of particular muscle pairs.
To investigate the sophistication of impedance control by the
CNS, we varied the level of instability of a force field and
measured the endpoint stiffness of the arm after adaptation.
Based on our previous experiments, we expected a gradual
increase in endpoint stiffness in the direction of the instability
with little or no change in the perpendicular direction. We also
anticipated that the net stiffness of the arm and the environment
would remain constant if the CNS attempted to maintain a
specific margin of limb stability while interacting with the
environment. Such regulation of endpoint stiffness would pro-
duce a gradual elongation of the stiffness ellipse in the direc-
tion of the instability as the degree of instability increased.

M E T H O D S

Subjects

Five healthy, right-handed subjects participated in the study (4 male
and 1 female). The experiments were approved by the institutional
ethics committee and subjects gave informed consent.
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Apparatus

Subjects were seated with their shoulders restrained against the
back of a chair by a shoulder harness. A custom-molded rigid
thermoplastic cuff was securely fastened around the subjects’ right
wrist and forearm, immobilizing the wrist joint. Only the shoulder and
elbow joints remained free to move in the horizontal plane. The
subjects’ forearm was secured to a support beam in the horizontal
plane, and the cuff and beam were coupled to the handle of the
parallel-link direct drive air-magnet floating manipulandum (PFM).
Movement was thus restricted to a single degree of freedom in each
joint in the horizontal plane. Our coordinate system was positive to the
right (x-axis) and forward (y-axis) relative to the shoulder.

The PFM was powered by two DC direct-drive motors controlled at
2 kHz, and the subjects’ hand position was measured using optical
joint position sensors (409,600 pulse/rev). The force applied by
subjects at the handle of the PFM was measured using a six-axis
force-torque sensor (Nitta Corp. no. 328) with a resolution of 0.06 N.
The handle of the PFM (subjects’ hand position) was supported by a
frictionless air-magnet floating mechanism. The PFM was controlled
by a digital signal processor (0.5 ms/cycle) to reduce the effect of the
PFM’s dynamics on the subjects’ hand. Detailed descriptions of the
PFM and controller have previously been published (Gomi and
Kawato 1996, 1997).

The subjects’ view of the PFM-cuff-forearm coupling was blocked
by a table placed above the PFM. The start point, endpoint, and
current hand position were displayed on the surface of the table with
a projector mounted in the ceiling above the PFM. The start point and
endpoint were, respectively, located 31 and 56 cm directly in front of
the subjects’ shoulder joint. A computer monitor placed behind the
PFM displayed visual feedback information on the acceptance of a
trial based on the timing and final location.

Procedure

Subjects produced point to point movements with their arm in a null
field (NF) and in a position-dependent (divergent) force field (DF) of
several different strengths. The divergent force fields added negative
stiffness to the arm, causing a destabilizing or unstable interaction
between the robotic interface and the subjects’ arm. The DF produced
negative elastic force perpendicular to the target direction. If the
subject made a perfectly straight movement along the y-axis from start
to endpoint, zero perpendicular force was produced. However, if the
subject deviated from the y-axis, a perpendicular x-force was intro-
duced, increasing with deviation. Noise due to variability in the
descending motor command would normally cause the initial move-
ment direction to vary from trial to trial. The DF had an amplifying
effect on this motor output variability. Even relatively small devia-
tions in the initial trajectory, to one side or the other, caused the arm
to deviate farther and farther from the y-axis as the perpendicular
force increased. The DF was implemented as

�Fx

Fy
�� ��x

0
� (1)

where � (N/m) was chosen from the set {200, 300, 400, 500}. Values
of � both larger and smaller than each subject’s measured NF stiffness
were used such that the interaction ranged from slight destabilization
to instability. Only the two strongest subjects experienced the 500
strength force field. x is the lateral component of the subjects’ hand
position relative to the shoulder, and Fx and Fy are the forces
generated by the PFM in the x- and y-directions, respectively. Each
subject learned the force fields in a different order, and no two force
field strengths were presented on a single day. Usually many days
separated the presentation of two strengths of the force field. Previous
work has shown that subjects are able to adapt to this unstable force
field (Burdet et al. 2001; Franklin et al. 2003b; Osu et al. 2003). A

safety boundary (deviation of y-axis �0.05 m) was implemented
beyond which the force field reverted to a NF.

The experiment had two parts for each force field: learning and
stiffness estimation. The stiffness measurements were taken either on
the same day as learning or 1 day after based on the availability of the
equipment. In the learning phase, subjects first performed 20 success-
ful movements in the NF. A successful trial was one in which
movement terminated within the allocated time (0.6 � 0.1 s) and
within the 2.5-cm-diam end target. After 20 successful NF trials, the
DF was activated, although the subjects were given no warning.
Subjects then practiced in the force field until 100 successful trials had
been completed. All trials were recorded whether they were successful
or not.

After learning, the endpoint stiffness was measured using con-
trolled displacements (Burdet et al. 2000, 2001; Franklin et al. 2003a).
Subjects first completed 40 successful movements in the force field.
Then an additional 160 trials were performed, 80 of which were
randomly selected for stiffness estimation. For each of these 80 trials,
the PFM was programmed to briefly displace the subjects’ hand at the
midpoint of the movement in one of eight randomly chosen directions.
The PFM briefly perturbed the subjects’ hand by a constant distance
and then returned the hand to its predicted unperturbed trajectory. Full
details of the stiffness estimation method appear elsewhere (Burdet et
al. 2000).

Learning

To determine whether learning had occurred, hand-path error E,
representing the area between the actual trajectory and the straight line
joining the start and end targets, was calculated as in Osu et al. (2003).
The calculation was performed from time 0 (75 ms before hand-
velocity crossed a threshold of 0.05 ms�1) to time T (the termination
time when curvature exceeded 0.07 m�1; Pollick and Ishimura 1996).
Hand-path error was calculated for all practice trials. If the subjects’
hand deviated from the y-axis by �0.05 m at any time during a
particular trial, crossing the safety boundary, the x-axis position was
considered to remain at 0.05 m for the rest of the trial. This method of
calculation was used to ensure that the error was accurately repre-
sented even though the force field was shut off if subjects crossed the
safety boundary. An ANOVA was performed to examine whether
learning took place. The hand-path error on the first 10 and last 10
trials in the DF force fields was compared across all subjects (random
effect) and field levels. A similar analysis was performed using the
last 10 trials in the NF prior to the start of the DF and comparing them
to the last 10 trials in the DF. This was done to compare performance
at the end of practice to performance in the NF field.

Endpoint force of the arm was recorded during all of the experi-
ments. After adaptation, the mean force applied to the hand should not
have been different from that in the NF, regardless of the strength of
the DF. To confirm this, an ANOVA was performed across all force
field strengths, with subjects as a random effect, comparing the x- and
y-forces in the 20 NF trials prior to the onset of the DF to the last 20
successful trials during practice in the DF. Time varying muscle
torque at the shoulder and elbow was estimated using the equations of
motion for a two-link planar arm. Full details appear elsewhere
(Franklin et al. 2003b).

Stiffness estimation

The endpoint stiffness of the arm was measured after learning the
NF as well as after learning in each DF. Full details of the method and
analysis procedure are found elsewhere (Burdet et al. 2000; Franklin
et al. 2003a). Basically, a ramp up/hold/ramp down servo-controlled
displacement was applied to the hand near the midpoint of the
movement. Using the average force and displacement during a 60-ms
interval toward the end of the hold period, an estimate of the 2 � 2
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endpoint stiffness matrix (K) was obtained by linear regression as
represented by the equation

��Fx

�Fy
�� K��x

�y
�� �Kxx Kxy

Kyx Kyy
���x

�y
� (2)

where �Fx, �Fy, �x, and �y represent the mean change in endpoint
force in the x- and y-directions and the mean change in displacement
in the x- and y-directions, respectively. The stiffness in different
directions was represented in terms of an ellipse by plotting the elastic
force produced by a unit displacement (Mussa-Ivaldi et al. 1985). This
was done using the singular value decomposition method (Gomi and
Osu 1998).

The joint stiffness (R) was calculated from the endpoint stiffness
(K) using the relation

R � �Rss Rse

Res Ree
�� JTKJ �

�JT

��
F (3)

where J represents the Jacobian transformation matrix from endpoint
coordinates to joint coordinates, and the last term represents the
change in endpoint force due purely to the change in the geometry of
the arm produced by the displacement (Franklin and Milner 2003).
The Jacobian and force matrices were fixed using the mean values for
position and force during the measurement interval for each subject.

R E S U L T S

Changes in kinematics during practice

In the NF, subjects performed smooth accurate movements
to the target (Fig. 1). Small variations in the duration and path
occurred from trial to trial, likely due to factors such as motor
noise (Clancy and Hogan 1995; Harris and Wolpert 1998;

Jones et al. 2002; Van Beers et al. 2004; van Galen and van
Huygevoort 2000) and temporal deformation of the motor
command (Morishige et al. 2004). However, these were insig-
nificant compared with trajectory deviations produced when
the DF was first activated. Subjects’ movements were mark-
edly perturbed either to the right or the left of their normal
paths, and many crossed the safety boundary. This was true
even for low levels of instability, which only marginally
destabilized the interaction between the arm and the PFM. The
destabilizing properties of the DF caused an amplification of
the trial to trial variability seen in the NF. As learning pro-
gressed, subjects’ performance improved and relatively
straight movements to the target were achieved on most trials.
They were able to adapt the control of their arm to counteract
the destabilizing effect of the DF. By the end of the training
period, the trajectories were relatively straight and generally
successfully reached the end target, similar to NF trials. Sub-
jects required an average of 114 � 10 trials to achieve 100
successful trials.

The hand-path error was calculated for all levels of instabil-
ity (NF and DF). Early trials in the DF had large hand-path
errors, but these were gradually reduced during practice (Fig.
2). An ANOVA was performed to examine whether perfor-
mance improved. The hand-path error on the first 10 trials and
the last 10 trials in the DF (learning) was compared across all
subjects (random effect) and field strength. A significant main
effect of practice was found (F � 9.754, P � 0.029), indicating
that subjects were able to significantly reduce their hand-path
error by the end of practice in all fields. A significant interac-
tion effect between practice and field strength was also found
(F � 4.053, P � 0.045), indicating that the different force field
strengths caused different amounts of error in subjects’ move-
ments. This likely arises because the different field strengths
would amplify the variability in the trajectories to different
degrees, causing the magnitude of the error at the beginning of
practice to depend of the strength of the force field. To confirm
this, the hand-path error for the first 10 trials in the force fields
was compared using an ANOVA (Fig. 2D). The field strength
had a significant effect on the size of the error (F � 3.031, P �
0.031). Further support was provided by Scheffe’s post hoc
multiple comparison test, which indicated that the hand-path
error in the lowest and highest strength fields was significantly
different. However, in all cases, subjects adapted to the
changed dynamics, and the hand-path error values were re-
duced. Not surprisingly, the success rate paralleled the hand-
path error. When the hand-path error was large, the success rate
was low. The relatively low initial success rate at the highest
force field strength is similar to that found by Milner (2002b),
who investigated the ability of subjects to maintain a stable
posture in the DF. As subjects adapted to the force field and
reduced the hand-path error, the success rate also improved,
particularly for the highest force field strength.

To determine the extent to which the errors were reduced,
the first 10 NF trials before the activation of the DF and the last
10 practice trials in the DF were examined using an ANOVA
with main effect of field strength and with subjects as a random
effect. No significant difference was found between NF and DF
hand-path errors (F � 2.365, P � 0.197). This result indicates
that hand-path error in the DFs was reduced to a level similar
to hand-path error in the NF by the end of practice. Further-
more, no effect of field strength was found (F � 1.974, P �

FIG. 1. Unstable force field initially amplifies the variability of trajectories.
A: movements in the null field (NF). B: initial 5 trials in the position-dependent
force field (DF). The safety boundary is shown by solid black lines to either
side of the trajectories, outside of which the force field was inactivated for
safety reasons. C: final 5 movements in the DF. Force fields for this subject
were 200, 300, and 400 N/m.
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0.189), suggesting that error was reduced to levels similar to
that in the NF for all force field strengths. This indicates that
subjects were able to stabilize movements and achieve move-
ment trajectories similar to those in a stable, free environment
by the end of practice across all levels of instability.

Endpoint forces after practice

At the beginning of the learning session in the DF, subjects
experienced relatively large forces in the x-direction, which

were positive or negative, depending on the initial direction of
the trajectory. Once adaptation had occurred, and subjects were
able to make relatively straight movements, the x- and y-forces
measured in the DF did not differ significantly from those in
the NF (Fig. 3). An ANOVA compared the x- and y-forces in
the 20 NF trials prior to activation of the DF to the correspond-
ing forces in the last 20 successful trials of practice in the DF
(practice main effect), across all levels of instability (field
strength effect) with subjects as a random effect. The results
from the ANOVA found no significant differences for the
forces in the DF compared with the forces in the NF for either
the x- or y-directions (F � 1.639, P � 0.266 and F � 6.010,
P � 0.067, respectively). Similarly, no effect was found for
level of instability in either the x- or y-force directions (F �
1.898, P � 0.200 and F � 0.493, P � 0.696, respectively).

FIG. 2. Hand-path error is reduced during adaptation to the DF. A–C: error
in the NF for 20 trials prior to the onset of the DF, and 70 practice trials in the
DF are plotted for the 200-, 300-, and 400-N/m fields. Values shown are the
average of all 5 subjects. Early trials in the DF have large errors, but these were
reduced quickly as subjects adapted to the environmental dynamics. D: initial
hand-path error (over 1st 10 movements) increased as the field strength
increased. Hand-path error in the strongest field was significantly different
from that in the weakest field (P � 0.03). The black line indicates the
exponential best fit to the data as described previously (Osu et al. 2003). E:
success rate in DF. Percent of successful trials (not exiting the safety boundary)
is shown for the 1st (red) and last (blue) 10 learning trials at each field strength.
Error bars represent SE. Success rate in the early trials depended on the field
strength (F � 8.282, P � 0.002), where the 500 field was significantly less
than the 200 and 300 fields (Scheffe’s post hoc test). After learning, the success
rate on the last 10 trials was not significantly different across any of the force
fields (F � 2.517, P � 0.104).

FIG. 3. Endpoint forces were similar across all force field strengths after
learning. A: mean endpoint force profiles for the x- (top) and y-axes (bottom)
during movements after learning in the NF (green), 200 DF (yellow), 300 DF
(light orange dashed), 400 DF (dark orange), and 500 DF (red dotted). Only
subjects 1 and 2 performed trials in the 500 DF. B: mean and SD x- (top) and
y-force (bottom) at the midpoint of movements after adaptation for all force
fields. The midpoint of movements refers to the time at which stiffness was
estimated.
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Even for different levels of instability, the mean forces pro-
duced by subjects remained similar to those in the NF once
learning had taken place. Variance in endpoint force in the DF
was greater than in the NF because similar trial-to-trial varia-
tion in path was accompanied by larger forces in the DF than
in the NF. Nevertheless, adaptation to the DF required no
change in mean endpoint force compared with the NF.

Endpoint stiffness

After adaptation to each force field, each subjects’ endpoint
stiffness was measured at the midpoint of the movement during
movements in the force field (Fig. 4). Compared with the NF
stiffness ellipses, the DF stiffness ellipses were more anisotro-
pic or elongated. In particular, the dimension of the stiffness
ellipses remained similar to those in the NF for the y-direction,
whereas in the x-direction, the dimension of the stiffness
ellipses increased as field strength (level of instability) in-
creased. Although endpoint forces remained unchanged, sub-
jects were able to modify their endpoint stiffness, indicating
that the CNS was controlling stiffness via impedance control
rather than as a side effect of changes in endpoint force (Burdet
et al. 2001; Franklin et al. 2003a). This specific scaling of
stiffness in the x-direction (direction of instability) with level
of instability indicates that stability was not achieved by simply
co-contracting all the muscles of the arm equally. If subjects
had adapted to a force field by using such generalized muscle
co-contraction, the resulting stiffness ellipse would have been
modified mainly in size rather than in orientation and shape.

When the experiments were initially conducted with two of
the subjects (S3 and S4), the stiffness ellipses were found to
have increased in both the x- and y-directions after adaptation
to several levels of the force field. This differed from the
results for the other subjects and for the results of previous
experiments (Burdet et al. 2001; Franklin et al. 2003a). We
hypothesized that these subjects were either unable to control
stiffness independently along the two directions unlike other
subjects or they required more training to learn the adaptation
strategy used by the other subjects. To test these hypotheses,
we had the subjects perform an additional practice session
followed by stiffness measurement for each force field. Sub-
jects performed another 200 practice trials, and stiffness was

again measured. These subjects therefore had practiced �500
trials in the force field altogether before the second stiffness
measurement. The stiffness measurements before and after the
second practice session are compared in Fig. 5. After more
extensive practice, the endpoint stiffness was smaller in both
the x- and y-directions than measurements made earlier (P �
0.004 and P � 0.011, respectively). The reduction [(original
K � new K)/original K] along the x-axis was small (12.6%)
compared with the reduction along the y-axis (49.4%).

To further investigate the effect of the level of instability
(field strength) on the endpoint stiffness of the limb, the x- and
y- (diagonal) components of the stiffness matrix K for each
subject and field strength were examined (Fig. 6). The x-stiff-
ness in the DF increased progressively with level of DF
instability. An ANOVA was performed on the x-component of
stiffness for field strength, with the NF being classified as 0. A
highly significant effect was found (F � 35.015, P � 0.001),
supporting this observation. In contrast, no significant differ-
ences (ANOVA) in stiffness in the y-direction were found with
level of instability (F� 0.362, P � 0.832). Further support was
provided by Scheffe’s post hoc multiple comparison test,
performed on the y-component of stiffness for each field
strength, which showed no significant differences between any
two levels and found only one homogenous subset. The same
test performed on the x-component of stiffness found four
homogenous subsets at a significance level of � � 0.05. This
means that the x-component of stiffness was selectively in-
creased as field strength was increased without significantly
changing the y-component of stiffness.

The net stiffness is a representation of the combined stiffness
of the arm and the environment in the x-direction and is
calculated as the difference between the measured arm stiffness
and the force field stiffness. The net stiffness determines the
overall stability of the interaction between the arm and the
environment. For each force field strength, the net stiffness
required to stabilize movements remained constant, at a level
similar to the NF (Fig. 6A, black). An ANOVA performed on
the net stiffness in each field across all force levels and subjects
indicated no significant difference (F � 2.176, P � 0.129). A
post hoc test also found only one homogenous subset and
confirmed that there was no significant difference between net
stiffness for any two field strengths, including the NF. The

FIG. 5. Endpoint stiffness reduced in y-direction with sufficient training.
Endpoint stiffness ellipses are shown for 2 subjects after the initial learning
session (left) and after further training on a subsequent day (right). Ellipses are
shown using the same color code as in Fig. 3. NF ellipses are also shown for
comparison.

FIG. 4. Endpoint stiffness scales with strength of the unstable force field.
Endpoint stiffness ellipses after adaptation are shown for all 5 subjects in the
NF (green line), 200 DF (yellow line), 300 DF (light orange dashed line), 400
DF (dark orange line), and 500 DF (red dotted line).
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results indicate that in adapting to the unstable dynamics of this
study, the impedance controller selectively increased stiffness
in the direction of instability while maintaining stiffness in the
stable direction at a level similar to that in the NF. The arm
stiffness in the unstable direction was modified in a manner
such that net stiffness remained at a level similar to that in the
NF. This indicates that the CNS attempted to maintain a
specific level of stability when adapting to unstable dynamics
of different strengths.

Joint stiffness

The joint stiffness was estimated from the measurements of
endpoint stiffness. The shoulder and elbow joint stiffness (Rss,
Ree) values were plotted against shoulder and elbow joint
torque, respectively, for all subjects at all force field strengths
(Fig. 7). A linear regression was performed, and no significant
correlation was found between shoulder joint stiffness and
shoulder joint torque (r2 � 0.002). Similarly, no significant
relationships were found for either of the cross-joint stiffness
terms with either elbow or shoulder joint torque. The elbow
joint stiffness was correlated with the elbow joint torque (r2 �
0.32). However, the slope of this relation was much greater
than that found in previous studies under isometric conditions
(Franklin and Milner 2003; Gomi and Osu 1998).

D I S C U S S I O N

We have investigated the adaptation of limb impedance to
different levels of instability perpendicular to the direction of
movement. These destabilizing force fields initially caused the
subjects’ trajectories to deviate to either side of the straight line
between start and end targets. With sufficient practice, the
subjects were able to adapt to the force fields and perform
movements to the target similar to those in the null force field.
After adaptation, there was little difference between the forces
applied to the hand for any of the force fields compared with
the null force field. Therefore any changes in the stiffness were
not produced simply by a change in the joint torque. The
endpoint stiffness of the limb increased with the strength of the
force field. In particular, the stiffness in the x-direction in-
creased in proportion to the increasing instability of the force
field, which was oriented in that direction, whereas the stiffness
in the y-direction did not significantly change with the strength
of the force field. The overall stiffness in the x-direction,
encompassing the stiffness of the limb and that of the environ-

ment (net stiffness), was maintained at a constant level across
all force field strengths.

Interaction between motor noise and instability

When we make repeated movements, there are small varia-
tions in the trajectories from trial to trial. These trajectory
variations are produced by factors such as motor noise (Clancy
and Hogan 1995; Harris and Wolpert 1998; Jones et al. 2002;

FIG. 6. The x- and y-components of endpoint stiffness to-
gether with the net stiffness of the interaction between the limb
and the force field. A: the x-component of endpoint stiffness
after adaptation for all subjects in the NF (green), 200 DF
(yellow), 300 DF (light orange), 400 DF (dark orange), and 500
DF (red). The net stiffness (stiffness of the interaction between
the limb and DF) after learning is shown in black. Vertical bars
show 90% CIs. B: the y-component of endpoint stiffness in the
same force fields.

FIG. 7. Joint stiffness increases independently of joint torque for adaptation
to unstable dynamics. A: shoulder joint stiffness Rss plotted against shoulder
joint torque �s for all subjects in all force fields. Color of the dots indicates
from which force field the measurement came, using the same color scheme as
the previous figures. Dashed line was produced using the mean slope and
intercept data from the work of Gomi and Osu (1998). Line represents
relationship between shoulder joint stiffness and shoulder torque found during
stable posture (Rss � 3.18 � �s � 10.80). B: elbow joint stiffness Ree plotted
against �e for all subjects in all force fields. Dashed line again represents
relationship between elbow joint stiffness and elbow torque from Gomi and
Osu (1998) (Ree � 6.18 � �e � 8.67).
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Van Beers et al. 2004; van Galen and van Huygevoort 2000)
and temporal deformation of the motor command (Morishige et
al. 2004). These variations may generally be small enough not
to interfere with the performance of most activities. For move-
ments in an unstable environment, however, the effect of motor
noise is critical. The variability in trajectory produced by the
motor noise is amplified by the instability of the force field.
This produces a diverging trajectory to either one side or the
other of the desired path. To compensate for this effect, the
CNS must counteract the instability of the force field by
increasing the stability of the limb or by reducing the variabil-
ity to zero. It seems that eliminating the motor noise is not an
option, so instead, the CNS increases the stiffness of the limbs
to stabilize the total system of the limb and its environment.
This is similar to the strategy used to achieve higher accuracy
for a given movement speed or to achieve the same accuracy
for faster movements (Grey 1997; Gribble et al. 2003; Osu et
al. 2004).

Stiffness change is independent of joint torque

As muscles are activated, the stiffness increases along with
the increasing muscle force (Kirsch et al. 1994). This translates
into an increase in joint stiffness with increasing joint torque
(Carter et al. 1990; Gottlieb and Agarwal 1988; Hunter and
Kearney 1982; Milner et al. 1995; Weiss et al. 1988). Simi-
larly, the joint stiffness terms have been found to increase
linearly with the joint torque under stable conditions for a
multi-joint limb (Gomi and Osu 1998; Perreault et al. 2001,
2002). This is in sharp contrast to the results reported here,
where the joint stiffness increased with little change in the joint
torques. Although the stiffness of the elbow joint was corre-
lated with the joint torque, the slope of the relationship showed
that only a small portion of the change in stiffness could have
been produced by the change in torque. By co-contracting
antagonist muscles, the joint stiffness can be increased without
changing the net joint torques (Hogan 1984). This increased
co-contraction and joint stiffness allows the limb to counteract
the instability in the environment such that unperturbed move-
ments are possible (De Serres and Milner 1991; Milner 2002a).

Our previous work, examining this adaptation to unstable
dynamics carefully, modeled the changes in force and stiffness
on a trial by trial basis and found that the change in stiffness
could not be explained by the direct relationship between the
changes in muscle stiffness and muscle force (Franklin et al.
2003a). However, as only a single field strength was examined,
the variation in joint stiffness was relatively small. Conse-
quently, it was not possible to correlate joint stiffness with joint
torque. In this experiment, there was a large variation in joint
stiffness but we found almost no correlation between joint
stiffness and joint torque, confirming that the stiffness change
was controlled independently of joint torque. This supports our
hypothesis that the CNS explicitly controls the impedance of
the limb by learning an internal model related to the stability of
the external environment (Osu et al. 2003; Franklin et al.
2003b).

Net stiffness of the interaction is regulated

The net stiffness is the combined stiffness of the environ-
ment and the limb. In our case, it represents the stability of the

interaction between the man and machine. Burdet et al. (2001)
found that the net stiffness after adaptation was positive,
indicating a stable interaction, and that it was similar to the
limb stiffness in the null force field. In this experiment, the net
stiffness of the combined arm and environment was found not
to vary with the level of instability. This has important rami-
fications for the understanding of motor control. The neuro-
muscular system must be able to judge the instability of the
environment and adapt the stiffness of the limb to maintain this
constant net stiffness. The idea that we are able to judge the
stiffness of the environment is not new, other researchers have
found evidence that humans are able to judge their environ-
mental impedance (Jones and Hunter 1990, 1993). This may
occur through the estimation of both changes in environmental
force and its effect on limb kinematics. However, when mov-
ing, kinematic error alone may be sufficient to learn to coun-
teract the effect of instability in the environment. We propose
that the CNS uses the kinematic error on a given trial to update
an impedance model of the environment for modifying feed-
forward motor commands for the next trial. Using error infor-
mation from movements during repeated trials, we can slowly
build up an internal representation of the stability of a task
performed in a specific environment or with a specific tool and
compensate for any instability. Such changes in the feedfor-
ward control would be intimately related to the development of
an inverse dynamics model to compensate for necessary
changes in the external force (Franklin et al. 2003a).

Control of the endpoint stiffness characteristics

This study confirms the findings of our previous work
(Burdet et al. 2001; Franklin et al. 2003a) and generalizes them
for different levels of instability. In particular, we were able to
show that the stiffness of the limb is not just selectively
increased in the direction of the instability but that it increases
in proportion to the level of instability. This provides clear
evidence that the CNS is able to control the impedance of the
limb as proposed by Hogan (1985).

Studies of multi-joint impedance under static conditions
have generally found limited control over the orientation and
shape of the stiffness ellipse (Gomi and Osu 1998; Perreault et
al. 2002). However, in these studies, subjects were instructed to
modulate their stiffness based on the feedback of EMG or
measured endpoint stiffness. In contrast, during movement in
an unstable environment, we have shown that the stiffness of
the limb can be rotated and elongated selectively in the direc-
tion of the instability. The question remains whether this is
particular to movement as opposed to posture or whether it
occurs as a result of the feedback and learning signals, which
are used to guide the subjects. In our experiment, subjects must
increase the impedance of the limb above that of the environ-
ment to succeed at the task. They are also are required to
practice extensively. They, therefore, receive two key signals
which may allow the CNS to learn this control of the endpoint
stiffness. The first is proprioceptive sensory information from
the periphery, which can be used to evaluate the instability of
the environment. The second is the cumulative effect of co-
contraction. High levels of co-contraction allow subjects to
succeed at the task but can also lead to fatigue. Subjects
performing the task only once may increase stiffness far above
the minimum that is required. However, subjects performing

3103IMPEDANCE CONTROL BALANCES STABILITY AND METABOLIC COST

J Neurophysiol • VOL 92 • NOVEMBER 2004 • www.jn.org



the task repeatedly will find it useful to learn to minimize
muscle activity. This view is supported by the finding that there
was less co-contraction during a force control task than during
a less stable position control task (Franklin and Milner 2003).

However, there are other possible explanations that could
account for differences in impedance control between posture
and movement. In recent experiments examining load sensi-
tivity of neurons in primary cortex, it appears that independent
populations of neurons respond to loads during posture (static
loading) and movement (dynamic loading) (Scott 2004). Dif-
ferent excitatory and inhibitory projections of two such popu-
lations of cortical-motor neurons might result in differences in
the ability to regulate co-contraction and stiffness. Neverthe-
less, there are theoretical limits to the modification of stiffness
geometry by the CNS, and we are currently investigating how
the CNS works within these constraints when the interaction
dynamics are unstable.

Metabolic cost is reduced

To adapt to the DF, the CNS selectively modified stiffness
such that a specific level of stability was maintained in the
direction of the instability without change in the perpendicular
direction. Under static conditions without training, Mussa-
Ivaldi et al. (1985) found a global increase in stiffness in
response to sinusoidal perturbations applied in specific direc-
tions. The strategy seen here, however, to maintain a specific
stability margin for all levels of force field instability, was
energy efficient, because any additional stiffness in either the
stable or unstable directions would have required more muscle
co-activation and thus more expenditure of metabolic energy.
Increased muscle activity is generally related to increased
metabolic cost (Foley and Meyer 1993; Hogan et al. 1996; Sih
and Stuhmiller 2003). A nonspecific increase in stiffness mag-
nitude would require co-activation of all pairs of antagonist
muscles in the arm, which would be more costly in terms of
energy expenditure than selective co-activation. The selective
increase in stiffness along the direction of instability indicates
that the CNS does not increase the activation of all muscles
equally, but attempts to find a balance when modifying arm
impedance. It faces the optimization problem of maintaining
stability while minimizing metabolic cost.

A greater reduction in the metabolic cost might be achieved
by relying on feedback control, either reflexive or voluntary,
rather than feedforward control. However, there are several
problems with such a strategy. First, feedback correction op-
erates with a significant delay. During this time, the arm would
be pushed farther away from the desired trajectory by the force
field and the force applied to the arm would increase. Not only
would the error be large, but the force needed to correct the
error would be difficult to estimate because of the instability. In
addition, the metabolic cost of initial force production is higher
than that required to maintain the force level (Russ et al. 2002).
Consequently, a series of brief contractions, e.g., 250 ms, could
have a higher metabolic cost than a single contraction of longer
total duration (Hogan et al. 1998). Therefore it may be more
efficient metabolically to co-contract muscles continuously to
produce a stable interaction with the environment throughout
the entire movement rather than reciprocally activating mus-
cles and reacting to perturbations after they occur. Further-
more, such feedforward control can ensure that perturbations

do not occur, which is a prerequisite for skilled tool use that
could not be guaranteed if the CNS relied on delayed feedback
control.

While this paper attempts to explain the results in terms of
achieving stability with minimal metabolic cost, there are also
other possible explanations why the muscle activity is being
reduced. In particular, other parameters such as net muscle
generated stress at a joint or a measure of the effort or the
neural activity could easily replace our proposed metabolic
cost. The current work cannot distinguish between any of these
related possibilities. However, we feel that the assumption that
the CNS balances stability and metabolic cost is the most
intuitive interpretation and the most understandable in terms of
the evolutionary pressures on the development of motor learn-
ing.
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