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We propose a new model of motor learning to explain the exceptional dexterity and rapid adaptation to change, which characterize
human motor control. It is based on the brain simultaneously optimizing stability, accuracy and efficiency. Formulated as a V-shaped
learning function, it stipulates precisely how feedforward commands to individual muscles are adjusted based on error. Changes in
muscle activation patterns recorded in experiments provide direct support for this control scheme. In simulated motor learning of novel
environmental interactions, muscle activation, force and impedance evolved in a manner similar to humans, demonstrating its efficiency
and plausibility. This model of motor learning offers new insights as to how the brain controls the complex musculoskeletal system and
iteratively adjusts motor commands to improve motor skills with practice.
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Introduction
Most daily activities require that we learn to apply forces and stabilize
our limbs to move and interact with objects in our environment
(Hogan, 1985; Rancourt and Hogan, 2001). The learning process
appears to involve the gradual formation of an internal representa-
tion of the relationship between motor commands and motion en-
abling the CNS to adapt the dynamics of the limb to its physical
environment. This internal representation appears to be used for
both feedforward (anticipatory) (Lackner and Dizio, 1994; Shad-
mehr and Mussa-Ivaldi, 1994; Flanagan and Wing, 1997; Krakauer
et al., 1999; McIntyre et al., 2001; Singh and Scott, 2003) and feed-
back (Todorov and Jordan, 2002; Franklin et al., 2007; Kurtzer et al.,
2008) control. Although there is some controversy as to whether the
internal representation comprises inverse and/or forward models of
the task dynamics (Ostry and Feldman, 2003; Pasalar et al., 2006;
Yamamoto et al., 2007), it is clear that to ensure stable control when
the environmental forces arise from unpredictability or mechanical

instability it must also have the capacity to regulate mechanical im-
pedance (Hogan, 1984; Burdet et al., 2001; Franklin et al., 2004,
2007). Feedforward control of mechanical impedance is necessary in
biological systems because neural delays preclude the use of feedback
to compensate for instability in the environment (Mehta and Schaal,
2002).

Although it is recognized that the internal representation can be
rapidly modified to adapt to changes in environmental forces, the
mechanisms used by the CNS are still unknown. By investigating
iterative changes in muscle activation during adaptation we identi-
fied several principles which we used as the basis for a simple algo-
rithm in a new computational model. Our novel algorithm learns
the time-varying motor commands to individual muscles that pro-
duce the same force and mechanical impedance observed when hu-
mans adapt to changes in environmental forces, including those aris-
ing from instability in the environment. It departs significantly from
algorithms based on optimization (Burdet and Milner, 1998; Harris
and Wolpert, 1998; Stroeve, 1999; Todorov, 2000; Todorov and Jor-
dan, 2002; Guigon et al., 2007; Trainin et al., 2007; Izawa et al., 2008)
as it predicts the transients of learning, as well as from existing su-
pervised learning schemes (Kawato et al., 1987; Slotine and Li, 1991;
Katayama and Kawato, 1993; Burdet et al., 1998; Gribble and Ostry,
2000; Thoroughman and Shadmehr, 2000; Donchin et al., 2003;
Emken et al., 2007) because they have no mechanism to counteract
mechanical instability.

Materials and Methods
Principles of our motor dynamics adaptation mechanism. Motor learning
uses sensory feedback to modify feedforward commands and improve
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performance (Johansson and Cole, 1994). Existing learning schemes
from neuroscience or robotics based on iterative learning or adaptive
control change the feedforward command based on a monotonic func-
tion of the kinematic error in joint or muscle space (Kawato et al., 1987;
Slotine and Li, 1991; Katayama and Kawato, 1993; Burdet et al., 1998;
Gribble and Ostry, 2000; Thoroughman and Shadmehr, 2000; Donchin
et al., 2003; Emken et al., 2007) (see Fig. 1 A). Positive error leads to an
increase in the feedforward motor command on the next trial, and neg-
ative error to a decrease. This mechanism can learn joint torques to
counteract predictable environmental forces. However, environmental
forces are sometimes not predictable. In particular, when a task involves
unstable interaction with the environment the same central motor com-
mand can produce very different movements if the mechanical output
varies because of perturbations, neural noise, or history and state-
dependent features of muscle force. Therefore, the corrective action
needed to compensate for disturbances experienced when a movement is
attempted on one occasion cannot be used to predict the appropriate
feedforward command for subsequent movements, unlike stable sys-
tems. Under these conditions existing learning schemes fail because they
do not provide a means for adapting limb impedance (Osu et al., 2003;
Burdet et al., 2006).

The principles for a general model of motor learning emerged from
detailed examination of trial-by-trial changes in temporal patterns of
muscle activation in studies where subjects performed a reaching task in
the presence of a perturbing force field (Franklin et al., 2003a; Milner and
Franklin, 2005). We identified common features in the evolution of mus-
cle activation whether the force field elicited a stable or unstable interac-
tion with the arm, which are captured in the three principles described
below. If a muscle was stretched relative to its normal trajectory during
unperturbed movements, its activity increased later in the same trial
(online feedback). It also increased in the following trial with an advance
in the temporal profile, leading to a reduction in the perturbing effect of
the force field. This is evident from a comparison of the blue and red
curves for posterior deltoid, corresponding to the first and second trials
(see Fig. 2 B). As our first principle, the feedforward muscle activity in-
creases in response to positive error (unexpected muscle lengthening) on
the previous trial. This is similar to the learning function of most previ-
ous motor learning models when restricted to the positive error domain
(see Fig. 1 A).

However, if a muscle was shortened by the perturbation, its activity
also increased, both later in the same trial and with a temporal advance
on the following trial (see Fig. 2 B, blue and red curves for pectoralis
major). As our second principle, negative error (muscle shortening) also
results in an increase in feedforward activity on subsequent trials. Given
these two principles, an additional condition for learning is that the
increase in activation of lengthened muscles produces a greater change in
joint torque than that of shortened muscles, as in Figure 1 B. This is not
necessarily a straightforward task for the control system as the joint
torque produced by a given muscle is a function of muscle length and
moment arm, which can both vary with the joint angle. Finally, we noted
that the activation of all muscles gradually decreased during training (see
Fig. 2 B, light blue curves). As our third principle, the CNS reduces the
feedforward activation of a muscle if the error is below some threshold.
This will reduce feedforward muscle activity as performance improves
(Franklin et al., 2003a). We propose that the CNS combines these three
principles to learn movements that are stable, accurate, and energy
efficient.

The feedforward motor command can be conceptually divided into re-
ciprocal activation of antagonistic muscle groups (to control net joint
torque) and coactivation (to control joint stiffness) (Feldman, 1980). The
difference between changes in feedforward activity of lengthened and short-
ened muscles produces the necessary reciprocal activation to compensate
perturbing forces (Fig. 1C, shaded region). In contrast, the common change
in feedforward activity of all muscles produces changes in coactivation to
optimize the mechanical impedance (Fig. 1D, shaded regions), given that
muscle stiffness and damping are monotonic functions of muscle activation
(Hunter and Kearney, 1982; Weiss et al., 1988). Models of motor learning
which fail to take into account this aspect of the muscular system will be
unable to learn to compensate for unstable environmental dynamics. In the

proposed scheme, limb endpoint force and impedance are learned simulta-
neously through trial-by-trial iteration without distinctly or explicitly repre-
senting dynamics and impedance (or reciprocal and coactivation com-
mands). This unique feature is not found in previous models (Kawato et al.,
1987; Slotine and Li, 1991; Katayama and Kawato, 1993; Burdet et al., 1998;
Gribble and Ostry, 2000; Thoroughman and Shadmehr, 2000; Donchin et
al., 2003; Emken et al., 2007).
Apparatus. Subjects sat in a chair and moved the parallel-link direct drive
air-magnet floating manipulandum (PFM) in a series of forward reach-
ing movements performed in the horizontal plane (Fig. 2 A). Their shoul-
ders were held against the back of the chair by means of a shoulder
harness. The right forearm was securely coupled to the PFM using a rigid
custom molded thermoplastic cuff. The cuff immobilized the wrist joint,
permitting movement of only the shoulder and elbow joints. The sub-
jects’ right forearm rested on a support beam projecting from the handle
of the PFM. Motion was, therefore, limited to a single degree of freedom
at the shoulder and at the elbow. The manipulandum and setup were
described in detail previously (Gomi and Kawato, 1997).

Experimental protocol. A total of 10 healthy right-handed individuals
participated in this study (20 –34 years of age; four females and six
males). The institutional ethics committee approved the experiments
and subjects gave informed consent. Subjects were required to make
0.25 m long reaching movements in 600 � 100 ms in the forward direc-
tion. All subjects practiced making movements in the null force field
(NF) with the apparatus on at least 1 d before the experiment. These
training trials were used to accustom the subjects to the equipment and to
the movement speed and accuracy requirements. Subjects were pre-
sented with different force fields separated by intervals of more than 3 d.
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Figure 1. Comparison of models for motor learning. A, In previous motor learning schemes,
update of the motor command (joint torque or muscle activation) corresponds to a monotonic
antisymmetric (in most cases, linear) function of the joint angle error or muscle length error. B,
In our new model there is a proportional increase in the feedforward command in response to
muscle lengthening, a proportional increase in response to muscle shortening with a slightly
lower gain, and a decrease when the error is near zero. This is shown for both muscles of an
agonist–antagonist pair. C, When a disturbance occurs, this model produces a scaled response
by modifying the reciprocal activation by the amount indicated in the shaded region to generate
an opposing force. D, When a large disturbance occurs, this model will produce an increase in
coactivation (green area) to stiffen the joint. When no disturbance is present, the motor com-
mand is reduced (orange area) to decrease metabolic cost.
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There were three force fields, although some subjects were not tested on
all three. These included a velocity-dependent force field (VF) and two
different divergent force fields (DFs), which exerted forces (Fx, Fy) on the
hand described respectively by

�Fx

Fy
� � ��13

18
�18
13 ��ẋ

ẏ�, �Fx

Fy
� � ��

0
0
0��x

y�,

�Fx

Fy
� � ��

�
0
0��x

y�, (1)

where (2/3 � � � 1) and (300 � � � 500) were adjusted to the strength
of each subject. The DFs were inactivated when �x� exceeded 5 cm for
safety reasons. Subjects began by performing 50 successful movements in
an NF which was unexpectedly switched to one of the force fields to
initiate the learning session. No information was given to the subjects as
to when the force field trials would begin. Subjects then continued to
perform reaches in that force field until 75 successful trials had been
completed. Successful trials were those which ended inside a 2.5 cm
diameter target window within the prescribed time (0.6 � 0.1 s). All
movements were recorded whether successful or not. Movements were
self-paced so subjects were able to rest between movements if they
wished.

Electromyography. Surface electromyographic (EMG) activity of six
arm muscles was recorded using pairs of silver-silver chloride surface
electrodes during the learning sessions. The electrode locations were cho-
sen to maximize the signal from a particular muscle while avoiding cross
talk from other muscles. The skin was cleansed with alcohol and prepared
by rubbing in electrode paste. This was removed with a dry cloth and
pregelled electrodes were then attached to the skin with tape. The spacing
between the electrodes of each pair was �2 cm. The impedance of each
electrode pair was tested to ensure that it was �10 k�. The activity of six
arm muscles [pectoralis major (sternocostal head), posterior deltoid,
biceps brachii (short head), triceps longus, brachioradialis, triceps late-
ralis] were recorded. The EMG signals were analog filtered at 25 Hz (high
pass) and 1.0 kHz (low pass) using a Nihon Kohden amplifier (MME-
3132) and then sampled at 2.0 kHz.

Data analysis. Integrated, rectified EMG was calculated over the inter-
val [-100 –100 ms] relative to the time of movement onset. The EMG
recorded during this time interval, which we will refer to as EMGFF, was
assumed to be representative of feedforward muscle activity with zero

contribution from the feedback mechanisms
that respond to perturbations induced by the
force fields (see section below entitled “timing of
feedback activity”). The signed handpath error
(Franklin et al., 2003a) was used as a measure of
position error on a given trial, which corre-
sponds to the integral of the lateral error be-
tween the handpath on a given trial and the
mean handpath in the null field. The signed
handpath error of a force field trial was esti-
mated as:

S�ex� � �
t�t0

tf

� x�t� � xNF�y�t����ẏ�t��dt, (2)

where xNF( y(t)) is the x position of the mean NF
trajectory at the current y position of the force
field trial and x(t) and y(t) represent the trajec-
tory during the force field trial. Hand-path er-
rors were calculated from the start time, t0 (75
ms before crossing a hand-velocity threshold of
0.05 m/s), to the termination time, tf (when cur-
vature exceeded 0.07 mm �1) (Schaal and Ster-
nad, 2001). The mean NF trajectory was esti-
mated using the last 10 trials in the NF for each
subject before the onset of the force field. Be-
cause movements both in the null field and force
fields tend to be slightly curved after learning,
this measure should more closely represent an

error sensed by the somatosensory system than a measure relative to a
straight-line trajectory. The error was related to the incremental changes
in feedforward muscle activity by computing the difference in EMGFF

between consecutive trials and plotting it against the signed handpath
error of the previous trial. Only data from the first 40 trials in each force
field were used in the analysis so as to maximize the signal-to-noise ratio
of changes in the EMG, which are largest during the initial stages of
learning. The change in EMGFF was expressed as a percentage of the NF
muscle activity before force field onset. The 840 values of change in the
feedforward command, compiled from 10 subjects adapting to the dif-
ferent force fields, was separated into eight equally sized (n � 105) groups
according to the size of the signed handpath error on the previous trial
and tested for a significant difference from zero using a two-sided t test.
We focus on the shoulder muscles because the shoulder angle changes
much more than the elbow angle as a result of lateral deviation from the
unperturbed handpath. Changes in elbow angle are negligible compared
with changes in shoulder angle (more than an order of magnitude less)
for lateral deviation from the unperturbed handpath. Therefore, for the
shoulder muscles a closer relationship between our kinematic error esti-
mate and the actual stretch of the muscle would be expected than for the
single joint elbow muscles. Because of the high trial-to-trial variability in
the EMG caused by its stochastic nature, the signal-to-noise ratio is low.
Therefore, of the two antagonistic muscle pairs acting at the shoulder, the
pair undergoing the greatest change in activation in response to the per-
turbing effect of a force field would provide the more suitable data for
analysis of the relationship between error and change in activation. Be-
cause the change in activity of pectoralis major and posterior deltoid was
greater than that of biceps brachii and triceps longus the analysis focused
on the former rather than the latter.

Force. The force measured at the hand during movements is a function
of two components: the force produced by the subject by feedforward or
feedback mechanisms and the force produced by the robot. The mean
change in force from one trial to the next was quantified over two inter-
vals. The first was before the movement onset (�100 to �10 ms relative
to movement onset) and the second included the early part of the move-
ment (�10 –130 ms relative to movement onset). Whereas the second
interval will be highly representative of the effects of the force field, the
early interval before any movement can only result from a change in the
feedforward control. The change in force was examined as a function of
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Figure 2. Changes in posterior deltoid and pectoralis major muscle activity during learning of a novel skill. A, The PFM exerts
forces on the hand during horizontal point-to-point reaching movements. B, Initial movements in the VF color coded by trial
number (left). C, Hand trajectories (right) (mean of five subjects). The NF muscle activity is shown in black (solid: mean of 20
movements; dashed: SD). The activity in the first movement (blue) contains large feedback responses delayed �200 ms from the
start of movement in the lengthened posterior deltoid and slightly later in pectoralis major, which is shortened. On the second
movement (red), there is a large early increase in the activity of both muscles suggesting a feedforward pathway. This feedfor-
ward muscle activity is increased again by the fourth trial (green). As the feedforward command compensates for the external
dynamics, there is a reduction of the muscle activity to a final level (cyan) (mean of the final 10 trials). Approximately 60 ms phase
advance in muscle activity was observed only between the first and second trials, and this suggests that only the feedback
component of the motor command is phase advanced by 60 ms and becomes a part of the feedforward command of the next trial.
EMG signals from five subjects were rectified, averaged and then filtered (fifth-order Butterworth 10 Hz low pass) for display
purposes.
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the signed handpath error on either the current
trial or the previous trial. Linear regression on
the data were performed to determine if the
slope was significantly different from zero. Sta-
tistical significance was determined at the p �
0.05 level.

Timing of feedback activity. After a short break
and a washout of the learning (50 NF trials),
subjects performed additional reaching move-
ments in the NF. On randomly selected trials the
NF was replaced by a force field. The force field
perturbed the trajectory which elicited reflex
and voluntary changes in muscle activity to cor-
rect the error. A total of 80 NF and 20 force field
trials were recorded for each force field. These
randomly applied force field trials are referred to
as before effect (BE) trials. Because the subjects
assume that they will normally be moving in the
NF the feedforward command can be presumed
to represent that in the NF.

The rectified, integrated NF EMG was sub-
tracted from the corresponding BE EMG to de-
termine the onset and magnitude of the correc-
tive (feedback) responses. The data from the BE
trials for all force fields and subjects were com-
bined. The onset of the feedback response was
determined by testing if the BE EMG was signif-
icantly greater than the NF EMG in successive 10
ms windows from 100 ms before the start of the
movement. This was then related to the signed
handpath error. An ANOVA with main effects
of force field (BE or NF) and signed handpath
error and subjects as a random effect was used to
test if the BE activity was different from the NF
activity in each window. A difference in activity
was assumed to be significant at the p � 0.05
(uncorrected for multiple comparisons) level
only if during the next interval the difference
was significant at p � 0.01 (uncorrected), i.e.,
the change in activity was both sustained and
became less variable. The responses of individ-
ual subjects in each field were also examined
[ANOVA with main effect of force field (BE or
NF)] to confirm the earliest onset time for each
subject. To determine the onset of the perturb-
ing effect of the force field movement in the
x-direction was compared (BE versus NF) using
the same technique to identify the point in time
where the position traces began to diverge.

The perturbations produced by the force
fields were characterized by a gradual increase in
force as the trajectory progressed. The trajectory
did not start to deviate noticeably from the unperturbed trajectory until
some time after the movement onset and did so gradually. A comparison
of the perturbed trajectories with NF movements shows that the force
field did not create a significant deviation in the trajectory until 50 ms
after the start of movement (Fig. 3A). The earliest significant differences
in position were found at 52 and 86 ms after the onset of the movement
in the VF and DF, respectively. The first significant change in muscle
activation on BE trials relative to NF movements occurred after this time
(Fig. 3B).

For none of the six muscles was the BE activity significantly different
from that of the NF trials before 130 ms after the start of the movement
(Fig. 3C). The earliest significant difference was found in the posterior
deltoid muscle �130 ms after movement onset. For individual subjects,
the earliest significant difference in muscle activation was determined to
occur 140 ms after the onset of the movement. It was only later than 130
ms that the size of the feedback response began to increase with the
kinematic error (Fig. 3D). Based on these results, the earliest detectable

onset time of the feedback component produced by the smooth pertur-
bations induced by the force fields was estimated as 130 ms after the start
of the movement. The feedback latency relative to movement onset (130
ms) is still considerably less than that found in similar force field pertur-
bation studies investigating the elbow joint (200 ms) (Shapiro et al., 2002,
2004). Because the force fields used in our study produced no significant
changes in muscle activity earlier than 130 ms, before this time it can be
assumed that reflex responses produced by the force fields are zero. This
does not mean that reflex activity cannot occur before 130 ms after the
onset of a movement, but for the slow perturbations induced by the
smooth displacements of the force fields used in this study no detectable
change in muscle activity that could be attributed to feedback occurred
before 130 ms. A conservative approach was taken in the analysis of
changes in the feedforward control by assuming that the interval of
purely feedforward activity ended 100 ms after the onset of the
movement.

Simulations. Simulations were performed using a 2-joint 6-muscle
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arm model with shoulder and elbow joints and agonist–antagonist pairs
of shoulder, elbow and double-joint muscles. The force produced by each
muscle was the sum of a feedforward control signal, signal-dependent
noise, muscle elasticity and a feedback signal. Noise was modeled as
Brownian motion multiplying a linear function of the total muscle acti-
vation (i.e., the sum of feedforward and feedback signals), with parame-
ters set to produce variance similar to experimental data for NF move-
ments. Muscle elasticity and feedback were modeled as linear functions
of the stretch and its derivative, with the feedback signal delayed by 60
ms, and muscle impedance increasing with activation. Model parameters
were set such that muscle elastic force depended primarily on muscle
length whereas force produced by feedback depended primarily on mus-
cle velocity. These values were set so that feedback contributed 20 –35%
of the total restoring force in NF movements.

Although extensive work has shown that a linear muscle model is not
accurate enough to reproduce the actual mechanical behavior of muscles,
this does not invalidate our use of a simple muscle model for investigat-
ing the learning algorithm. Whereas the model is linear in terms of the
length–tension relationship, it is nonlinear with respect to its input-
output relationships between command and tension. In particular, in
our model muscle, impedance increases with activation (one of the main
properties of nonlinear muscle models, critical for impedance control).
Because the muscle activation level depends both on the feedforward and
feedback motor commands, the tension does not depend linearly on the
command. We selected a simple muscle model with activation depen-
dent impedance for clarity in understanding how the learning algorithm
works. Although we believe that incorporating a nonlinear muscle model
would not invalidate our learning algorithm, it would make the simula-
tions more complex and could obscure some features of the learning
algorithm.

The feedforward waveform was updated iteratively after each trial be-
fore executing the next trial. The change in the feedforward waveform
was determined using the three principles of motor learning related to
the V-shaped learning function (supplemental Fig. S1, available at
www.jneurosci.org as supplemental material) where the error measure
was a function of the muscle length and its derivative. The feedforward
activation for each muscle is updated from one trial uFF

k to the next uFF
k 	 1

by (considering that it must remain positive):

uFF
k	1 �t� � 
uFF

k �t� � �uFF
k �t � ���, 
��	 � max � , 0�, (3)

where the change in activation from one trial to the next is governed by

�uFF
k �t� � � � ek �t� � Iek�t��20� � 	 � ek �t� � Iek�t��0� � 


ek �t� � e�
k �t� � rdė�

k �t�, � � 	 � 0, 
 � 0.
(4)

The superscript k denotes the trial number, �, 	 are the learning param-
eters and 
 a constant deactivation parameter (supplemental Fig. S1,
available at www.jneurosci.org as supplemental material). The Kro-
necker function IS � 1 for the set S and 0 outside it. We phase advance the
feedforward update by � equal to the feedback delay to compensate for
this delay. In our implementation the length error e�(t) was evaluated
relative to a reference trajectory, as described in the supplemental mate-
rial (available at www.jneurosci.org) and the term rd indicates the relative
level of velocity error to length error. The term ��e�I{e � 0} causes an
increase in feedforward command in response to stretching of the mus-
cle, 	�e�I{e � 0} causes an increase in the feedforward command in re-
sponse to shortening of the muscle, and �
 a decrease of activation when
the stretch or shortening is below some threshold. Changes in the kine-
matics, endpoint stiffness and muscle activity during and after the learn-
ing process were compared with experimental data. The endpoint stiff-
ness was estimated using the same procedure as in human experiments
(Burdet et al., 2000; Franklin et al., 2003b). A detailed description of the
algorithm and of how physiological parameters were identified is pro-
vided in the supplemental material (available at www.jneurosci.org as
supplemental material).

Results
Adaptation mechanism is supported by experimental results
The principles of our adaptation mechanism were examined by
quantifying changes in feedforward muscle activity during learn-
ing of novel dynamics. Electromyographic activity was recorded
during adaptation of horizontal point-to-point movements,
away from the body, subjected to force fields exerted on the hand
by a robotic interface. Activity was recorded from shoulder and
elbow muscles. We focus on the shoulder muscles as their length
changes were most closely linked with the hand position error.
Subjects initially performed movements in an NF which was un-
expectedly changed to one of three perturbing force fields after
fifty to sixty trials. A measure of feedforward muscle activity was
obtained by considering only the early part of the movement. To
relate position error to changes in the feedforward command,
trials were sorted into eight groups of equal size according to
signed handpath error. The signed handpath error for each trial
(Eq. 2) was paired with the change in the feedforward activity of
the following trial and the relationship was tested for significance.
The feedforward activity of the posterior deltoid or pectoralis
major muscle increased significantly on the subsequent trial if the
muscle had been stretched. However, its feedforward activity also
increased if it had been shortened on the previous trial (Fig.
4A,B). In contrast, if the signed handpath error was small, then
the subsequent feedforward activity decreased. This provides
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Figure 4. Changes in the feedforward components of the motor command. A, Change in
feedforward activity of the posterior deltoid (mean � SEM) plotted against the signed hand-
path error from the previous trial. The change in the feedforward activity was binned into
equally sized groups depending on the signed handpath error and plotted against the mean
signed handpath error of each group. *p � 0.05, **p � 0.01), ***p � 0.005, changes in
feedforward activity significantly different from zero. B, Change in the feedforward activation
of the pectoralis major. Both muscles showed similar responses: if the muscle either lengthened
or shortened on the previous trial the feedforward command increased on the subsequent trial.
However, if the signed handpath error was close to zero on the previous trial, then the feedfor-
ward command of both muscles was reduced. The dotted lines are the least squares linear fit to
the positive and negative error regions of the data with a common intercept for both regions.
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quantitative evidence for the three principles of our new model
for motor learning.

To confirm that the V-shaped curve is representative of the
data for all three force fields and is not simply the result of com-
bining three different adaptation patterns; we also examined each
force field separately. The changes in feedforward muscle activity
in each force field are well fit by the V-shaped function support-
ing the idea that the CNS utilizes such an algorithm for motor
adaptation under a variety of environmental conditions (Fig. 5).

The adaptation mechanism predicts that for a given kinematic
error on a trial, there will be both a change in the coactivation
level (impedance) and reciprocal activation level (force). The
previous results clearly support the higher coactivation levels for
larger errors. To confirm the second prediction, a change in the
net force, we examined the changes in the lateral force produced
at early times during movements in the unstable force fields (Fig.
6). The change in the endpoint force was quantified over two
intervals: before the start of the movement (�100 to �10 ms
relative to the onset of the movement) and during the early por-
tion of the movement (�10 to 130 ms relative to the onset of the
movement). When we examine the forces during the movements,
the forces are mainly produced by the force fields themselves. By
constraining the timing to before the start of the movement, no
forces from the field are present allowing us to examine the
changes produced by the subject’s feedforward change in motor
command. According to our hypothesis we would expect to see a
monotonic relationship between the change in the force on the
current trial and the kinematic error on the previous trial. If the
early change in endpoint force is examined as a function of
the error on the same trial (Fig. 6A), it is clear that the slope is not
significantly different from zero ( p � 0.52), demonstrating that
there is no effect of the force field on the force experienced at the
handle during this interval. In contrast, if we examine the force
during the early portion of the movement (Fig. 6C), a significant
negative slope is found ( p � 0.00001), purely indicative of the
subject’s resistance to the PFM which produces a force related to
the position of the hand. When the early change in force (before
movement start) is examined as a function of the kinematic error
on the previous trial (Fig. 6B), we also see a significant negative
slope ( p � 0.0046). However, this no longer represents resistance

to the PFM, which produces no force before movement onset.
Instead, it represents the change in the force applied by the sub-
ject which would act opposite to the error experienced on the
previous trial as predicted by our model of adaptation. The force
experienced later in the movement as a function of the error on
the previous trial (Fig. 6D) has a positive slope ( p � 0.00001)
because subjects compensate for errors in the unstable DF field by
producing a small movement in the opposite direction, causing
the hand to be pushed in that direction by the force field. These
results show that the appropriate change in the direction of the
force is seen as predicted by our model of adaptation, supporting
the theory that there are different slopes in the V-shaped function
for stretched and shortened muscles of each muscle pair.

Simulations confirm that our algorithm is a viable
mechanism for adaptation
To verify that the new model represents a viable mechanism for
adaptation to novel dynamics, particularly when interactions are
initially unstable, we simulated the control of arm movements
under conditions equivalent to those of our experiments using a
computational model based on our three principles (Materials
and Methods and supplemental material, available at www.
jneurosci.org as supplemental material). The simulation pro-
duced NF movements similar in terms of mean trajectory and
variability to those of human subjects (Fig. 7A). When a VF was
introduced, the arm was clearly perturbed from its normal tra-
jectory (Fig. 7B). On subsequent trials, the feedforward com-
mand gradually adapted, converging monotonically to the NF
trajectory. In a DF, the initial trials were perturbed either to the
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Figure 6. Changes in endpoint force (x-axis) from one trial to the next as a function of the
kinematic error. A, The change in force from the last trial to the current trial before the start of
the movement expressed as a function of the signed handpath error on the current trial. The
mean change in the force was determined from �100 to �10 ms relative to the onset of the
movement. The p value indicates whether the slope of the linear regression is significantly
different from zero. B, The trial-by-trial change in the force before the start of movement
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the force was determined from �100 to �10 ms relative to the onset of the movement. C, The
trial-by-trial change in the force during an early time in the movement plotted as a function of
the error on the current trial. The change in force was determined from �10 to 130 ms relative
to the onset of movement. D, The trial-by-trial change in the force during an early time in the
movement plotted as a function of the error on the previous trial. The change in force was
determined from �10 to 130 ms relative to the onset of movement.

-60 -40 -20 0 20 40 60

-20

-30

-40

-10

0

10

20

30

40

50 pectoralis major

*

*
*

***

*

**

VF

0 DF
-45 DF

stretchshorten

Signed handpath error on previous trial [cm2]

C
ha

ng
e 

in
 fe

ed
fo

rw
ar

d 
co

m
m

an
d

[%
 o

f N
F]

Figure 5. Changes in the feedforward components of the motor command for the pectoralis
major muscle in each of the three force fields. The change in feedforward activity of the muscle
(mean � SEM) plotted against the signed handpath error from the previous trial. *p � 0.05),
**p � 0.01), ***p � 0.005, changes in feedforward activity significantly different from zero.
The solid lines are the least squares linear fit to the positive and negative error regions of the
data with a common intercept for both regions.
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right or the left because of the instability just as for human sub-
jects (Fig. 7C). However, as control improved with training,
movements became stable and successfully reached the target.
For both the VF (dashed) and DF (solid), the stiffness (compris-
ing both intrinsic and reflexive stiffness) changed during learn-
ing, resulting in the same characteristics as found experimentally
(Burdet et al., 2001; Franklin et al., 2003b) (Fig. 7D). This in-
creased endpoint stiffness was produced by the combined action
of a larger intrinsic stiffness and larger reflexive force, arising
from changes to the feedforward command. The mechanism also
correctly predicted the trial-by-trial changes in the muscle activ-
ity during learning (Fig. 8). The magnitude and time course of
changes in the simulated muscle activity paralleled that observed
during human adaptation (Franklin et al., 2003a).

Discussion
This new computational model of motor learning is general be-
cause it provides mechanisms for adapting to interactions that
can be either stable or unstable, in the presence of inherent motor
noise, and comprehensive because it predicts trial-by-trial
changes in kinematics and temporal profiles of muscle activation.
Our algorithm corresponds to concurrent optimization of stabil-
ity, error, and activation, at the muscle level. It extends algo-
rithms based on the gradient descent of an error function, which
have been used to show how the state space representation of a
feedforward model can be generalized to different movement
directions (Thoroughman and Shadmehr, 2000). Current neuro-
physiological models able to predict trial to trial modifications of
force or torque (Kawato et al., 1987; Katayama and Kawato, 1993;
Gribble and Ostry, 2000; Thoroughman and Shadmehr, 2000;
Donchin et al., 2003; Emken et al., 2007) and corresponding
nonlinear adaptive controllers for robots (Slotine and Li, 1991;
Burdet et al., 1998), which use a monotonic antisymmetric (in
most cases, linear) update of the feedforward command, have no
explicit mechanism to alter the limb impedance independently
from joint torque (or limb posture), and, therefore, cannot learn

to compensate for unstable dynamics (Osu
et al., 2003). Models based exclusively on
optimization of cost functions such as min-
imization of end-point variance and/or
muscle activation (Burdet and Milner,
1998; Harris and Wolpert, 1998; Stroeve,
1999; Todorov, 2000; Todorov and Jordan,
2002; Guigon et al., 2007; Trainin et al.,
2007; Izawa et al., 2008) can only predict
final learning outcomes, whereas our
model can account for the complete pro-
gression of experimentally observed
changes in force and impedance through-
out learning. This algorithm, when com-
bined with a method for generalization
(Donchin et al., 2003), and a method for
storing and accessing multiple internal
representations (Haruno et al., 2001) could
provide a powerful description of motor
adaptation.

The new model has different implica-
tions for reaching in force fields which pro-
duce a stable interaction versus those
which produce an unstable interaction
with the arm. In both cases, the initial error
results in muscle coactivation on the sub-
sequent trial because both lengthened and
shortened muscles increase their feedfor-

ward activity. The effect on shortened muscles is evident in Figure
2B where activation of pectoralis major increased for the first five
trials. This coactivation increases the impedance of the limb and
makes it more resistant to the disturbance of the force field. When
the interaction is stable, the directional error is consistent from
trial to trial so the greater change in feedforward activity of
lengthened muscles compared with shortened muscles favors a
gradual increase in reciprocal muscle activation (Franklin et al.,
2003a) producing a net force in the direction compensating for
the perturbation (Milner and Franklin, 2005). When the interac-
tion is unstable, consecutive movements may be perturbed in
opposite directions (Osu et al., 2003) such that antagonistic mus-
cles undergo lengthening on alternate trials. Consequently, coac-
tivation increases to a much greater extent than reciprocal acti-
vation. When the error is sufficiently small there is a gradual
reduction of superfluous coactivation (Thoroughman and Shad-
mehr, 1999; Franklin et al., 2003a). This allows reciprocal activa-
tion to develop when stability prevails or tuning of mechanical
impedance when instability is encountered.

Another unique feature of our model is a mechanism for
trade-off between performance (e.g., accuracy) and metabolic
cost of muscle activation. This is determined by the location of
the zero crossing in Figure 1D, which represents a threshold that
separates increasing and decreasing coactivation. The learning
scheme does not attempt to further reduce errors once they fall
below the threshold; rather it reduces energy consumption in this
region by reducing feedforward commands. Supporting evidence
for this reduction in feedforward commands has been shown
during walking studies examining motor adaptation (Emken et
al., 2007). Assuming that the error threshold of the learning func-
tion (Fig. 1C) is reduced as performance improves this algorithm
could also accurately predict the slow decrease in learned lateral
force when a subject is unaware that a lateral perturbing force has
been replaced by a virtual channel (Scheidt et al., 2000).

This learning scheme resembles feedback error learning (Ka-
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simulated perturbations after completion of model learning. Bottom, Stiffness ellipses for the same conditions from experimental
measurements on human subjects (mean of 6 subjects shown) (Franklin et al., 2003b).
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wato et al., 1987), in the sense that the
movement error in the last trial determines
the appropriate change in the feedforward
command for the next trial. However,
there are a number of important differenc-
es: learning takes place in muscle space,
disturbance of any one muscle produces
activation of the antagonist (cocontrac-
tion) and there is a gradual reduction in
activation when the error is small. The er-
ror information determines the change to
the feedforward command by means of a
V-shaped learning function. This error in-
formation needs to be phase advanced be-
fore being incorporated into the feedfor-
ward command for the following trial such
that the new motor command acts to pre-
vent the disturbance that produced this
feedback in the first place. Such a phase
advance can be implemented computa-
tionally (Katayama and Kawato, 1993;
Schweighofer et al., 1998) and may be pro-
duced through spike-timing-dependent
plasticity (Chen and Thompson, 1995; Doi
et al., 2005). The data presented here also
show that the learning, the change in feed-
forward motor command, is guided by the
error, and in particular by the size of the
error which indicates that a type of super-
vised learning is used by the brain. Fine and
Thoroughman (2006, 2007) have sug-
gested that there are situations where cate-
gorical rather than proportional responses
to error are observed, which would not be
expected with supervised learning. Al-
though categorical responses are not pre-
dicted by our model, it is possible that pro-
portional responses could be masked and
appear to be categorical if the responses
were quantified in terms of changes in ki-
nematics, as in the cited studies. Our model
predicts that the change in feedforward
compensation for a disturbance will in-
clude both an increase in the impedance of
the limb and a change in the applied force.
If the disturbance is particularly difficult to
counteract, such as a brief force pulse (Fine
and Thoroughman, 2006) or if its strength
is unpredictable (Fine and Thoroughman,
2007) then the CNS might reduce the dif-
ference in the slope of the V-shaped learn-
ing function (Fig. 1B) between the agonist
and antagonist muscles. This would bias
the strategy for reducing the kinematic er-
ror toward increased limb impedance
through coactivation as opposed to enerat-
ing a counteracting force. Although such
changes in coactivation would be propor-
tional to error, they would not be manifest as proportional after-
effects and would, therefore, be classified as categorical using the
measures used by Fine and Thoroughman (2006).

With a simple control mechanism that incorporates the mus-
cle length error experienced in one movement as a learning sig-

nal, the CNS can quickly adapt to changes in the environmental
dynamics. Unlike many proposed schemes for the control of re-
dundant muscle systems, muscle forces and limb impedance can
be appropriately modified, using a single adaptive process, with-
out explicit calculation of inverse dynamics or impedance. When
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both the perturbed muscle and its antagonists change their feed-
forward activity in response to the perturbation, joint torques
and limb impedance are modified to progressively improve per-
formance. This mechanism provides powerful capabilities for ad-
aptation, as demonstrated in our simulation.
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