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Abstract The goal of this work was to investigate
stability in relation to the magnitude and direction of
forces applied by the hand. The endpoint stiffness and
joint stiffness of the arm were measured during a postural
task in which subjects exerted up to 30% maximum
voluntary force in each of four directions while control-
ling the position of the hand. All four coefficients of the
joint stiffness matrix were found to vary linearly with
both elbow and shoulder torque. This contrasts with the
results of a previous study, which employed a force
control task and concluded that the joint stiffness
coefficients varied linearly with either shoulder or elbow
torque but not both. Joint stiffness was transformed into
endpoint stiffness to compare the effect on stability as
endpoint force increased. When the joint stiffness coef-
ficients were modeled as varying with the net torque at
only one joint, as in the previous study, we found that
hand position became unstable if endpoint force exceeded
about 22 N in a specific direction. This did not occur
when the joint stiffness coefficients were modeled as
varying with the net torque at both joints, as in the present
study. Rather, hand position became increasingly more
stable as endpoint force increased for all directions of
applied force. Our analysis suggests that co-contraction of
biarticular muscles was primarily responsible for the
increased stability. This clearly demonstrates how the
central nervous system can selectively adapt the imped-
ance of the arm in a specific direction to stabilize hand
position when the force applied by the hand has a
destabilizing effect in that direction.

Keywords Impedance control · Position control ·
Posture · Instability · Biarticular muscles

Introduction

Most of the activities performed by humans involve
interacting with objects in the environment. In many of
these tasks, the object applies variable forces to the hand.
The mechanical impedance at the point of interaction
governs the resulting motion. In particular, any external
disturbance is resisted by the mechanical impedance of
the arm. The ability of the central nervous system to adapt
the mechanical impedance of the arm to different
environmental constraints and conditions may have a
significant bearing on how successfully the task can be
performed.

The mechanical impedance of the arm can be modeled
as comprising inertia, damping, and stiffness. The inertia
of the arm changes systematically with variations in the
joint angles of the arm. This can be achieved by changing
the hand location in the workspace or by utilizing
redundant degrees-of-freedom of the arm (Hogan 1985).
Such configuration-dependent changes in inertia are
paralleled by changes in stiffness (Mussa-Ivaldi et al.
1985; Flash and Mussa-Ivaldi 1990) and damping (Dolan
et al. 1993; Tsuji et al. 1995). For example, the stiffness
tends to increase in the direction from the shoulder to the
hand and decrease in the orthogonal direction as the
elbow is extended (Milner 2002b). However, unlike
inertia, stiffness also depends strongly on muscle activa-
tion.

Joint stiffness has been extensively studied for joints in
isolation. A number of studies have shown that joint
stiffness increases linearly with joint torque under quasi-
isometric conditions (Cannon and Zahalak 1982; Hunter
and Kearney 1982). Recently, Gomi and Osu (1998)
demonstrated that this is also the case when torque is
simultaneously varied at two joints. Transformation of the
relation between joint stiffness and joint torque results in
variation of endpoint stiffness with the magnitude and
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direction of the endpoint force (Gomi and Osu 1998;
McIntyre et al. 1996; Perreault et al. 2001).

The relation between joint stiffness and joint torque is
not invariant. For example, stiffness is modified in an
adaptive fashion to compensate for load stability (Akaza-
wa et al. 1983; De Serres and Milner 1991; Milner
2002a). This is achieved by co-contraction of antagonistic
muscles. It has also been shown that joint stiffness is
larger during position control than during force control
(Akazawa et al. 1983; Doemges and Rack 1992a;
Doemges and Rack 1992b) due both to increased co-
contraction (Buchanan and Lloyd 1995) and reflex gain.
Comparable tasks involving coordination of several joints
have not yet been investigated. The magnitude of the
endpoint stiffness should be similarly affected in analo-
gous multi-joint tasks, but there could also be changes in
its directional characteristics, which cannot be inferred
from single joint studies.

Several studies have reported that size but not
orientation or shape of the endpoint stiffness can be
modified (Dolan et al. 1993; Flash and Mussa-Ivaldi
1990; Mussa-Ivaldi et al. 1985). However, a transient
directional change in the endpoint stiffness was reported
during a ball catching task (Lacquaniti et al. 1993).
Furthermore, Gomi and Osu (1998) have shown that
during controlled co-contraction subjects did exhibit some
rotation of the endpoint stiffness.

Hogan (1985) suggested that humans may be able to
control both the magnitude and directional characteristics
of endpoint stiffness by the coordinated co-contraction of
uniarticular and biarticular muscles, providing the ability
to adapt the endpoint stiffness to environmental demands
without changing limb posture. Recently, this was shown
during arm movements by examining the adaptation to a
destabilizing force field (Burdet et al. 2001). In contrast,
studies examining the controllability of the endpoint
stiffness during isometric tasks suggest that control of
endpoint stiffness geometry is very limited (Gomi and
Osu 1998; Perreault et al. 2002). The present study was
undertaken to investigate how endpoint stiffness geome-
try would be adapted in a postural task where such
adaptation was necessary for successful performance of
the task. To that end, the endpoint stiffness of six subjects
was measured during a position control task in which the
applied endpoint force magnitude and direction were
varied.

Materials and methods

Six subjects (three male and three female), ranging between 21 and
42 years of age, participated in this study. All subjects gave
informed consent to the procedures, which had been previously
approved by the university research ethics committee. Subjects
were seated in a chair with the trunk restrained by a harness that
limited movement of the subject’s right arm to the shoulder and
elbow joints. The subject’s right hand was held in a neutral wrist
position by a cast made of thermoplastic splinting material bolted to
the handle of a robot manipulandum (Fig. 1). The custom-fitted cast
prevented movement at the wrist joint and provided a rigid
coupling between the manipulandum and the arm. The upper arm

was supported in the horizontal plane, level with the right shoulder,
using a sling tethered approximately 1.5 m above the subject.

Apparatus

Measurements were made with a two degree-of-freedom robot
manipulandum, configured so that the end effector moved along the
surface of a sphere. The robot comprised two axial air gap DC
servomotors (Mavilor Motors MT, Barcelona, Spain) linked by
means of a gimbal (Adelstein 1989). A joystick attached to the
gimbal allowed the subject to interact with the robot. The distance
from the center of the gimbal to the point of interaction was
0.265 m.

A six-axis force-torque sensor (ATI FT 3175, resolution 0.1 N)
at the end of the joystick measured the forces applied by the
subject. The motor shaft angles were measured with brushless
resolvers (MICRON No. 11) and digitized by 16 bit resolver to
digital convertors (CSI 168 4800, resolution: 0.005�). Velocity and
force signals were acquired at 1000 Hz with a 16-bit data
acquisition card (AT-MIO-16X, National Instruments, Austin,
Tex., USA). An analog control signal specifying the torque for
each motor was updated at 1000 Hz and sent to a PWM current
amplifier (Glentek, El Segundo, Calif., USA) that powered the
torque motor. Joystick and target positions were displayed on the
computer screen and updated at 20 Hz. Although an attempt was
made to record EMG from relevant arm muscles, electrical noise

Fig. 1 The manipulandum used for estimating arm stiffness. The
subject’s arm was linked to the joystick by means of a splint bolted
to the top of the joystick directly above the force transducer. The
end of the joystick moves on a spherical surface which is
approximately horizontal for small movements. Force was applied
to the hand by torque motors linked to the joystick. Visual feedback
of hand and target position was presented to the subject on the
monitor
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generated by the torque motors interfered with the EMG signal to
the extent that no corroboration of the results using EMG was
possible.

Protocol

The endpoint stiffness of the arm was measured in a flexed posture
with the shoulder at 45� of forward flexion and the elbow joint
flexed by 90�. In addition to the shoulder and elbow angles, the
distances from the center of rotation of the elbow to the center of
the joystick and between the centers of rotation of the shoulder and
elbow were measured for each subject. The subject opposed forces
produced by the robot directed at 45�, 135�, 225�, and 315� to the
subject’s frontal plane. Maximum isometric voluntary contractions
(MVC) were first recorded for each subject in each of these four
directions with the joystick clamped at the central position. The
force levels used in subsequent experiments were percentages [0%
(relaxed), 7.5%, 15%, 22.5% and 30%] of the MVC in each
direction. The MVCs for each subject are listed in Table 1.

The subject was instructed to control the position of the
joystick. The robot generated a force, which the subject was
required to oppose to remain at the target position. This differs from
previous studies (Gomi and Osu 1998; Perreault et al. 2001) which
employed a force control task where the subject’s hand was
stabilized by servo-control while the subject produced a target
force. In the present study, subjects were required to hold the
joystick in a 4 mm square target window. Once the target position
had been maintained for a randomly variable period of 1–3 s, the
hand was displaced. The display of joystick position was frozen
during the displacement.

To estimate the stiffness, perturbations were applied in eight
directions, uniformly distributed over 360�. A pulse-step force
perturbation was used to move the arm to a new position (Fig. 2).
The resulting movement was similar to a ramp and hold displace-
ment. The size of the force pulse was varied, depending on the
displacement direction and experimental condition, to produce a
consistent displacement of approximately 10 mm. The displace-
ment was small enough that the hand essentially remained in the
horizontal plane (the deviation from horizontal was less than
0.2 mm). Forty-eight trials were recorded for each condition, i.e.,
six for each displacement direction. Subjects were instructed not to
react voluntarily to the displacement. The order of conditions (force
direction, force level, and perturbation direction) was randomized
throughout the experiment and across subjects.

Analysis

The endpoint stiffness at the hand and the joint stiffness at the
elbow and shoulder were calculated from the measured change in
force and displacement. Joint stiffness had previously been
estimated together with inertia and damping by fitting a second-
order model to the entire response (Gomi and Kawato 1997; Gomi
and Osu 1998). However, an estimate of the joint stiffness, which is
independent of inertia and damping, can be obtained by considering
only the portion of the response where acceleration and velocity are
low enough that contributions to the joint torque from inertia and

damping can be neglected. This occurred at the time of peak
displacement. The stiffness was estimated from the equation:

dts

dte

� �
¼ Rss Rse

Res Ree

� �
dqs

dqe

� �
ð1Þ

using linear regression. Joint angles, q, and torques, t, were
obtained by transforming the position and force from Cartesian
space to joint space using inverse kinematics and the Jacobian
transformation matrix. The mean joint angles and torques during a
320-ms interval prior to the onset of the displacement were
subtracted from instantaneous values during a 26-ms interval,
centered on the time of peak displacement, to obtain the differen-
tials. During this interval, the values of acceleration and velocity
were low enough that inertial and damping forces could be ignored.
The components of the joint stiffness matrix for each experimental
condition were then determined using least squares multiple linear
regression of the data from all 48 trials. Two relations between joint
stiffness and joint torque were examined, a single and a multiple
linear regression model, using the data of individual subjects and
the pooled data of all subjects. The univariate (single independent
variable) relation [corresponding to that found by Gomi and Osu
(1998)] was expressed as:

Rss Rse

Res Ree

� �
¼ m1 tsj j þ b1 m2 tej j þ b2

m3 tej j þ b3 m4 tej j þ b4

� �
: ð2Þ

The second relation, a bivariate (two dependent variables)
relation, which allowed each joint stiffness coefficient to vary with
both shoulder and elbow torque, was expressed as:

Rss Rse

Res Ree

� �
¼ m1a tsj j þ m1b tej j þ b1 m2a tsj j þ m2b tej j þ b2

m3a tsj j þ m3b tej j þ b3 m4a tsj j þ m4b tej j þ b4

� �
:

ð3Þ
The endpoint stiffness, expressed in Cartesian coordinates, was

computed using the method of Mussa-Ivaldi et al. (1985). The static
mean force, F, and the position vector, x, during the 320-ms
interval prior to displacement were subtracted from the instanta-
neous values during the 26-ms interval to obtain the differentials.
The stiffness matrix was estimated using multiple linear regression.

dFx

dFy

� �
¼ Kxx Kxy

Kyx Kyy

� �
� dx

dy

� �
ð4Þ

Fig. 2 Traces of force and position during a perturbation in the
315� direction. The force perturbation consisted of a pulse that
displaced the hand and a bias (step) that maintained an approxi-
mately constant displacement during the measurement interval. The
shaded region indicates the interval during which the joint and
endpoint stiffness were measured. During this period the velocity
was near zero

Table 1 Maximum voluntary force (N)

Subject Force direction

45� 135� 225� 315�

A 141 284 162 268
B 136 259 154 212
C 98 204 152 179
D 86 189 127 160
E 93 172 142 135
F 50 39 69 51
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The endpoint stiffness can be represented in terms of the
eigenvalues of the stiffness matrix using an ellipse, where the major
and minor axes correspond to the maximum and minimum
eigenvalues. Singular value decomposition of the stiffness matrix
K was used to find the eigenvalues (Gomi and Osu 1998).

Geometric and muscle contributions to stiffness

Endpoint stiffness is represented in Eq. 5 as the sum of two
coefficients, which will be referred to as endpoint muscle stiffness
and geometric stiffness when represented in Cartesian space.

K ¼ J�1T R� @JT

@q
F

� �
J�1 ð5Þ

The endpoint muscle stiffness, which is the first coefficient on
the right side of Eq. 5, arises from the change in muscle force that
accompanies muscle length changes during the displacement of
the arm. The geometric stiffness does not arise from muscle
properties, but rather from changes in shoulder and elbow angle
that affect the transformation of joint torques to endpoint force.
The geometric stiffness is zero when endpoint force is zero and
increases in proportion to the endpoint force. The endpoint

muscle stiffness was obtained from the joint stiffness, R, by
setting the force equal to zero. The geometric stiffness was then
calculated by subtracting the endpoint muscle stiffness from the
total endpoint stiffness, i.e., the term on the left-hand side of
Eq. 5.

Results

Position and force records used in estimating stiffness are
illustrated in Fig. 2. The changes in force and displace-
ment between the shaded region and the respective values
prior to the perturbation were used in estimating stiffness.
The mean latency to the center of the shaded region was
228€51 ms after perturbation onset.

Fig. 3 Joint stiffness plotted against shoulder and elbow torque.
Each coefficient of the joint stiffness matrix is plotted against both
shoulder torque and elbow torque. The correlation coefficient (r2)
of each relation is shown in the top left-hand corner of each panel.
Data from all six subjects are shown. For conditions where the
elbow torque was zero, the data are represented by black stars
whereas for conditions where the elbow torque was non-zero the
data are represented by grey circles

Fig. 4 A Elbow and cross-joint stiffness are shown in relation to
shoulder torque for conditions where elbow torque was zero.
Correlation coefficients for each relation are shown in the upper left
corner of each panel. Data from all six subjects are shown. B
Shoulder stiffness is shown in relation to elbow torque. The
shoulder stiffness is plotted separately for zero elbow torque (black
stars) and non-zero elbow torque (grey circles). The light lines
represent the linear regression for zero elbow torque and the dark
lines for non-zero elbow torque. The shoulder stiffness was higher
in cases where elbow torque was non-zero for both the positive and
negative shoulder torque directions. This indicates a dependence of
shoulder stiffness on elbow torque
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Joint stiffness

Each joint stiffness coefficient was plotted against elbow
and shoulder joint torque to investigate the nature of the
relation between joint stiffness and joint torque during
position control as the applied force was varied (Fig. 3).
The single joint shoulder stiffness (Rss) was found to be
more highly correlated with shoulder torque than elbow
torque while the cross-joint and elbow stiffness coeffi-
cients (Rse, Res, and Ree) were more strongly correlated
with elbow torque. However, the data suggest that a
univariate relation between joint stiffness and joint torque
may not be the best model. In particular, it can be seen
that the elbow stiffness (Ree) and cross-joint stiffness (Rse
and Res) coefficients varied between approximately 0 and
40 Nm/rad when elbow torque was zero. This indicates
that elbow and cross-joint stiffness coefficients may also
have co-varied with shoulder torque as the endpoint force
was increased.

To test whether this occurred, linear regression was
performed between stiffness and shoulder torque for trials
where elbow torque was zero (Fig. 4A). High correlations
were found between elbow and cross-joint stiffness
coefficients and shoulder torque (0.85, 0.84, and 0.82).

The shoulder stiffness data were separated into two
groups: shoulder stiffness estimates for trials where the

elbow torque was approximately zero (|te|�0.8 Nm) and
shoulder stiffness estimates for trials where the elbow
torque was non-zero (|te|>0.8 Nm) (Fig. 4B). Differences
between the two groups were examined using an
ANCOVA with covariate shoulder torque for each
direction of shoulder torque (positive and negative). The
shoulder joint stiffness was found to be significantly
larger when elbow torque was non-zero than when elbow
torque was zero for both the positive (P=0.005) and
negative (P<0.001) shoulder torque directions. This
demonstrates that the joint stiffness varied with both
elbow and shoulder torque. Multiple linear regression was
then performed on the data of individual subjects and on
the pooled data of all subjects using the model of Eq. 3.
This was compared to the univariate model of Gomi and
Osu (1998) where the shoulder stiffness coefficient (Rss)
varied with shoulder torque only while the other three
coefficients (Rse, Res, and Ree) varied with elbow torque
only (Eq. 2). The univariate model did not account for as
much of the variance in the data [R2=0.84 0.71 0.65 0.74]
as the bivariate model [R2=0.90 0.86 0.84 0.87]. There-
fore, the bivariate model better describes the variation in
joint stiffness during the position control task. The
regression coefficients for the bivariate relation are listed
in Table 2 along with the correlation coefficients.

Table 2 Bivariate stiffness re-
lation with joint torque [slopes,
intercepts, 95% confidence in-
tervals (CI), and correlation
coefficients]. Each stiffness co-
efficient is related to both
shoulder torque (ts) and elbow
torque (te)

Subject ts Slope€CI te Slope€CI Intercept€CI Correlation coefficient

(a) Rss

A 2.77€0.50 0.94€0.63 13.39€7.01 0.91
B 2.68€0.68 1.24€0.78 11.07€7.54 0.86
C 2.76€0.62 1.19€0.71 6.81€5.29 0.89
D 3.07€1.02 0.94€1.12 5.36€7.05 0.79
E 3.22€0.97 0.74€0.98 5.47€7.03 0.81
F 4.22€0.75 1.27€0.62 2.94€1.45 0.98
All 3.03€0.23 1.14€0.30 6.55€2.01 0.90

(b) Rse

A 0.73€0.33 2.24€0.42 14.55€4.61 0.92
B 0.97€0.49 2.42€0.57 8.03€5.51 0.88
C 0.72€0.53 2.90€0.61 8.74€4.50 0.90
D 1.01€0.86 2.30€0.94 8.81€5.97 0.74
E 0.96€0.69 2.53€0.70 3.50€5.01 0.85
F 1.41€1.15 3.30€0.95 4.34€2.23 0.94
All 1.02€0.19 2.53€0.25 7.05€1.67 0.86

(c) Res

A 1.03€0.54 2.08€0.68 8.65€7.54 0.81
B 0.77€0.49 2.49€0.57 7.78€5.50 0.88
C 0.85€0.45 2.78€0.52 5.75€3.88 0.92
D 1.32€0.89 1.95€0.97 4.49€6.12 0.72
E 0.76€0.41 2.26€0.42 1.23€2.99 0.93
F 1.50€0.73 2.55€0.60 2.20€1.41 0.96
All 1.12€0.20 2.37€0.26 3.88€1.78 0.84

(d) Ree

A 0.92€0.50 2.57€0.64 18.38€7.05 0.86
B 0.80€0.49 3.27€0.57 12.58€5.52 0.92
C 0.63€0.68 3.70€0.79 11.36€5.85 0.89
D 1.25€0.98 2.52€1.07 11.24€6.76 0.74
E 1.11€0.74 3.15€0.75 8.84€5.42 0.88
F 1.48€1.13 3.71€0.94 6.95€2.20 0.95
All 1.12€0.22 3.11€0.29 10.24€1.91 0.87
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Endpoint stiffness

The endpoint stiffness ellipses of all six subjects are
plotted in Fig. 5. The ellipse geometry is based on the
eigenvectors and eigenvalues obtained from the singular
value decomposition of the stiffness matrices. The
stiffness changed shape, size, and orientation as the
endpoint force magnitude was varied. The size of the
ellipse increased as larger forces were applied in each of
the four directions. The shape of the endpoint stiffness
also became more isotropic as endpoint force increased,
particularly in the 135� force direction. The orientation of
the endpoint stiffness varied depending on the direction of
force. In general, this change in orientation became more
prominent as the force level increased.

Endpoint muscle stiffness and geometric stiffness

The decomposition of endpoint stiffness into geometric
and muscle stiffness was carried out for all force
conditions investigated in this study. The endpoint muscle
stiffness and total endpoint stiffness for one subject are
shown in Fig. 6A along with the effect of the geometric

stiffness on the maximum and minimum eigenvalues of
the stiffness matrices (Fig. 6B and C).

The geometric stiffness increased with endpoint force.
It produced an increase in endpoint stiffness when the
applied force was in the negativey-direction (towards the
body) and a decrease when the applied force was in the
positivey-direction (away from the body). Geometric
stiffness had a large effect on the minimum eigenvalue
of the stiffness matrix (Fig. 6B), which changed by as
much as 200 N/m as endpoint force increased to 100 N. In
contrast, geometric stiffness had relatively little effect on
the maximum eigenvalue for the force directions of this
study.

We used the relation between joint stiffness and joint
torque with the mean regression coefficients reported by
Gomi and Osu (1998) to simulate how endpoint stiffness
would vary with endpoint force in a force control task.
The results are shown in Fig. 6D and E for the 135�
direction. As the endpoint force increases, stiffness in the
direction of the minimum eigenvalue decreases mono-
tonically. This closely matches the behavior of the
measured endpoint stiffness depicted in Fig. 10 of their
paper (Gomi and Osu 1998). At a force of 22 N, the
minimum eigenvalue and stiffness become negative,

Fig. 5 A The endpoint stiffness ellipses of all six subjects (A–F)
are shown for each of seventeen conditions. The central ellipse
represents the stiffness with the arm relaxed. The other ellipses are
organized outwards in the direction that the force was applied. The
distance to the center of an ellipse from the center of the central
ellipse represents the applied force as indicated by the scale at the
bottom left. All ellipses are drawn to the same scale, which is

indicated in the middle of the figure. B Orientation of the endpoint
stiffness ellipse for each of the force conditions. The mean value of
the six subjects (bar) and the standard deviation (line) are shown.
The position of the bar indicates the condition as in A. C Mean
and standard deviation of the shape of the endpoint stiffness ellipses
for all conditions. Shape is expressed as a number from 0 (straight
line) to 1 (circle) and calculated as in Gomi and Osu (1998)
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signifying instability parallel to the narrow axis of the
stiffness ellipse. Furthermore, instability becomes greater
as the applied force increases. Since the position of the
hand was servo-controlled by the robot (Gomi and Osu
1998), this instability was compensated by the stiffness of
the position servo. However, had the central nervous
system relied on such a strategy during our position
control task, subjects would not have been able to
successfully perform the task.

Stability of the bivariate relation

In our position control task, the joint stiffness coefficients
scaled with both elbow and shoulder torque. In light of the
failure of a univariate relation to provide adequate
stability at moderate to high force levels, a likely
rationale for a bivariate relation would be to afford
greater stability. If so, the endpoint stiffness should be
greater in the direction of least stability, represented by
the minimum eigenvalue of the endpoint stiffness matrix,
with a bivariate relation compared to a univariate relation
between stiffness and torque. To test this hypothesis, the
maximum and minimum eigenvalues of the stiffness
matrix, modeled with each relation, were compared for
each force direction using an ANCOVA with covariate
endpoint force level. The results of this comparison are
shown in Fig. 7. The differences between stiffness
eigenvalues for the two relations depended on the
direction of applied force. Generally, the eigenvalues
increase as the endpoint force increases. However, the
slope depends on the direction of applied force. The
minimum eigenvalues obtained with the bivariate model
were larger in the 45� (P<0.001) and 135� (P<0.001)
directions than those obtained with the univariate model.
In the 315� force direction there was no difference
between the minimum eigenvalues obtained with the two
models (P=0.464). In the 225� force direction, the
minimum eigenvalues were slightly smaller with the
bivariate than the univariate model (P<0.001). However,
in this force direction the bivariate stiffness ellipses were
rotated (clockwise 28.35�) with respect to the univariate
stiffness ellipses. In contrast to the univariate relation, the
bivariate relation generated positive endpoint stiffness
under all conditions.

The maximum eigenvalues were always positive and
increased with endpoint force regardless of the direction
of applied force. There was no difference between the

Fig. 6 A Endpoint stiffness and endpoint muscle stiffness shown
for subject A. Endpoint muscle stiffness ellipses are represented by
thick grey lines. Total endpoint stiffness is represented by thin dark
lines. Layout of the plot is the same as Fig. 5. B, C Effect of
geometric stiffness on total endpoint stiffness. Change in minimum
(B) and maximum (C) eigenvalue produced by the geometric
stiffness as a function of endpoint force. Black crosses represent
conditions where the y-axis force is negative or towards the body.
Light circles represent conditions where the y-axis force is positive
or away from the body. D Endpoint stiffness produced by the
univariate relation using the mean slope and intercepts of Gomi and

Osu (1998) for the 135� force direction. The magnitude and
direction of the restoring force in response to a displacement is
shown by the arrows along the directions of the minimum and
maximum eigenvalues. This minimum eigenvalue gradually de-
creases until the restoring force begins to assist the displacement.
The arm posture and force direction are illustrated at the far right. E
The minimum eigenvalue of the univariate relation (as in D)
expressed as a function of endpoint force for force in the 135�
direction. The minimum eigenvalue decreases monotonically and
becomes negative for endpoint forces above 22 N
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maximum eigenvalues of the bivariate and univariate
models for force directions of 45� (P=0.116) and 315�
(P=0.440). The slope of maximum eigenvalue with
endpoint force was slightly higher in the 225� direction

(P=0.037) and lower in the 135� direction (P<0.001) for
the bivariate as compared to the univariate model.

Discussion

We have shown that joint stiffness is modulated in a
different manner during position control, when the central
nervous system must compensate for mechanical insta-
bility, compared to force control, when position is
externally stabilized (Gomi and Osu 1998; Perreault et
al. 2001). We found that each coefficient of the joint
stiffness matrix varied with both shoulder and elbow
torque. This bivariate relation between joint stiffness and
joint torque effectively increased the stiffness at the hand
to ensure that posture would remain stable despite an
increasing tendency toward instability due to negative
geometric stiffness as applied force increased. The nature
of the bivariate relation suggests that biarticular muscles
played an important role in stabilizing hand position.

Comparison with previous studies

Stiffness of the relaxed arm has been measured in a
number of studies (Mussa-Ivaldi et al. 1985; Tsuji et al.
1995; McIntyre et al. 1996; Gomi and Osu 1998;
Perreault et al. 2001). Our results for the relaxed arm
are similar to those of earlier studies. We found that both
the single joint and cross-joint coefficients of the stiffness
matrix fell between the maximum and minimum values
previously reported for a comparable posture of the arm.
In the two previous studies where endpoint force direction
and magnitude were varied, a linear relation between joint
stiffness and joint torque was found (Gomi and Osu 1998:
Perreault et al. 2001). The investigators determined that a
single regression variable, either shoulder or elbow
torque, adequately explained the variance in the data.
Shoulder stiffness varied with shoulder joint torque, while
cross-joint and elbow stiffness varied with elbow torque.
In both of these studies, subjects performed a force
control task. We, on the other hand, investigated position
control and found that a single regression variable could
not account for as much of the variance in the data as it
had in the force control task. However, a multiple linear
regression model, in which each coefficient of the joint
stiffness matrix varied with both elbow and shoulder
torque, accounted for more of the variance in the position
control data. Our analysis suggests that this difference is
likely attributable to potential mechanical instability
when applying force during position control.

Mechanical stability

The mechanical stability of an arm posture can be
assessed from the endpoint stiffness. For planar motion, in
which only two joints participate (elbow and shoulder),
arm posture is stable if both eigenvalues of the endpoint

Fig. 7A, B Comparisons of minimum and maximum eigenvalues
for force control and position control tasks, computed from linear
regression equations. A Minimum eigenvalues shown as a function
of endpoint force. Values for endpoint stiffness produced by a
bivariate relation (corresponding to a position control task) are
plotted as dark circles along with the best-fit line (dark line).
Endpoint stiffness under force control was computed from a
univariate relation [as in Gomi and Osu (1998)]. Eigenvalues are
plotted as light crosses along with the best-fit line (light line). Each
panel corresponds to the force direction indicated at the center of
the figure. B Maximum eigenvalues as a function of endpoint force,
represented as in A
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stiffness matrix are positive, i.e., the stiffness is positive
in all directions, ensuring that the arm will return to its
original position after a small displacement (McIntyre et
al. 1996). Since the eigenvalues are generally not equal,
the margin of stability is better represented by the smaller
of the two eigenvalues. Therefore, our discussion will
focus on how the smaller or minimum eigenvalue varies
with the applied force vector.

The endpoint stiffness can be separated into a muscle
and a geometric component. The geometric component
can be attributed solely to the geometric transformation
between joint torque and endpoint force, which necessi-
tates that endpoint force changes whenever joint angles
change. Our analysis demonstrates that the geometric
stiffness can be stabilizing (increase the minimum
eigenvalue) or destabilizing (reduce the minimum eigen-
value), depending on the direction of the applied force
vector. Furthermore, the amount of stabilization or
destabilization (change in the minimum eigenvalue)
conferred by the geometric stiffness is directly propor-
tional to the magnitude of the applied force. For those
force directions in which geometric stiffness is destabi-
lizing, the decrement in geometric stiffness with applied
force must be offset by a corresponding increment in
endpoint muscle stiffness for the posture of the arm to
remain stable as applied force increases.

All previous studies which investigated the relation
between endpoint stiffness and applied force provided the
subject with some form of external stabilization. Hand
position was servo-controlled in the studies of Gomi and
Osu (1998) and Perreault et al. (2001), while cable tension
provided stability orthogonal to the direction of the load
in the study of McIntyre et al. (1996). In our case, the task
was inherently unstable because the joystick behaved like
an inverted pendulum with very little friction. Since the
task was to control the position of the joystick while
opposing an external force, the subject had to stabilize the
joystick. Furthermore, the subject also had to compensate
for any reduction in stability when the force direction
corresponded to the direction in which geometric stiffness
produced a decrement in the minimum eigenvalue. This
requirement appears to be responsible for our observation
that all coefficients of the joint stiffness matrix depend on
both elbow and shoulder torque (which we refer to as a
bivariate model). This contrasts with the results of the
force control studies in which joint stiffness was
adequately represented by a dependence on only elbow
or shoulder torque, i.e., a univariate model.

By comparing the effect of torque variation on
endpoint stiffness using bivariate and univariate models
with experimentally derived parameters, we showed that
the minimum eigenvalue of the endpoint stiffness derived
from the bivariate model was always greater than or equal
to that derived from the univariate model. The difference
was most striking when the force direction corresponded
to that in which the geometric stiffness reduced the
minimum eigenvalue of the endpoint stiffness. In this
case, the endpoint muscle stiffness resulting from the
univariate model was insufficient to counteract the

decrement in geometric stiffness. The minimum eigen-
value became negative when the applied force exceeded
22 N, implying that the arm would have been mechan-
ically unstable for forces greater than 22 N.

Task dependence of joint stiffness

Joint stiffness during force control and position control
has been compared in studies which isolated movement to
the distal joint of the thumb (Akazawa et al. 1983) or to
the flexion-extension axis of the wrist (Doemges and
Rack 1992a; Doemges and Rack 1992b). Higher stiffness
was reported during position control than force control
due to co-contraction of agonist and antagonist muscles
and/or greater stretch reflex responses. Similarly, clear
differences in muscle activity were seen in the elbow joint
for these two tasks (Buchanan and Lloyd 1995). Our
multi-joint position control task presented the central
nervous system with a higher dimensional problem than
that of the single-joint studies. The central nervous system
now had to solve the problem of controlling position in
the face of anisotropic, force-dependent instability. The
bivariate relation between joint stiffness and elbow and
shoulder torque suggests that the central nervous system
used selective co-contraction of the biarticular muscles to
achieve stability. McIntyre et al. (1996) showed that the
combined stiffness of biarticular and single-joint muscles
provided more uniform endpoint stiffness than could be
achieved with single-joint muscles alone. However, in
their constrained position control task they were not able
to demonstrate that subjects exploited the properties of
biarticular muscles to adaptively control the geometry of
the endpoint stiffness. In contrast, by reducing stability in
one direction only, Franklin et al. (2003) found that
selective activation of biarticular muscles could dramat-
ically transform endpoint stiffness geometry. If biarticular
muscles are used principally to counteract instability then
they would be expected to contribute much less to
endpoint stiffness in force control tasks where stability is
provided by external constraints.

Indeed, this is precisely what Perreault et al. (2001)
found. The slope of the relation between cross-joint
stiffness and shoulder torque was considerably less than
what we found and in some cases was not even
significantly different from zero. Furthermore, they found
that elbow stiffness did not vary at all with shoulder
torque [Ree vs Ts]=[�0.08] rad�1. Since any change in
stiffness of the biarticular muscles should have contribut-
ed to a similar change in single-joint elbow stiffness, we
can infer from their results that biarticular muscle
stiffness did not vary with shoulder torque. It would
appear, therefore, that the dependence of cross-joint
stiffness and elbow stiffness on shoulder torque, which
arises from selective activation of biarticular muscles,
does not occur when the arm is stabilized by external
constraints.

The dependence of cross-joint stiffness and elbow
stiffness on shoulder torque could result from either
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increased co-contraction of the biarticular muscles or
increased gain of heterogenic reflexes. The latter seems
the less likely possibility. First, we already have strong
evidence of selective co-contraction of biarticular muscles
in another task in which the minimum eigenvalue of the
endpoint stiffness was effectively reduced by a destabi-
lizing force field (Burdet et al. 2001; Franklin et al. 2003).
Second, there is no evidence that the strength of
heterogenic reflexes of the elbow and shoulder vary with
joint torque. Smeets and Erkelens (1991) found that the
heterogenic stretch reflex response in a single joint elbow
flexor was independent of shoulder torque. Furthermore,
since the torque produced by even the fastest reflex
responses is delayed by at least 50 ms with respect to the
stimulus (Stein and Kearney 1995), high reflex gains may
lead to greater instability in the form of tremor (Proc-
hazka and Trend 1988). One other possibility is that a
triggered response could have contributed to the effects
seen in this study. However, when asked, subjects are able
to suppress triggered reactions (Crago et al. 1976). Also,
the nature of the protocol, where force direction, force
level, and perturbation direction were randomized, would
have involved such a large repertoire of responses that the
preparation of an appropriate triggered response for each
condition would have been very unlikely. Furthermore, no
evidence of such a response was detected in comparing
the position traces of trials recorded near the beginning of
the experimental session and the end, at which point, had
subjects learned triggered responses, they would have
been more likely to produce them. Therefore, we
conclude that the bivariate relation between joint stiffness
and joint torque must be principally due to co-contraction
of biarticular muscles and that this represents a difference
between a position control task, such as ours, and a force
control task in which position is stabilized by external
constraints. This is yet another example of the ability of
the central nervous system to adaptively control the
mechanical impedance of the arm (Hogan 1985).
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