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Abstract— Object handovers, a seemingly straightforward
action, involve a complex interplay of predictive and reactive
control mechanisms in both partners. Understanding the cues
that are used by humans to predict object properties is
needed for planning natural robot handovers. In human-human
interactions, the receiver can extract information from the
passer’s movement. Here, we show in a VR simulated agent-
human object handover, that the human receiver can use passer
kinematic cues to predict the transported object’s properties,
such as weight, and preemptively adapt the grasping strategy
towards them. We show that when the agent’s movement is
correlated to the object weight, humans can interpret this
cue and produce proportional anticipatory grip forces before
object release. This adaptation is learned even when objects
are presented in a random order and is strengthened with
the repeated presentation of the pairing. The outcome of this
study contributes to a better understanding of non-verbal cues
in handover tasks and enables more transparent and efficient
real-world physical robot-human interactions.

I. INTRODUCTION
Future assistive robots will perform complex tasks along-

side diverse user groups, necessitating advanced collabora-
tive skills such as handover – a foundational yet challenging
aspect of physical human-robot interaction (pHRI). Despite
extensive research [1], achieving the fluency and efficiency
of human-human (H2H) handovers in robot-human (R2H)
exchanges remains an open challenge. Object handover ap-
pears to be a straightforward action, but requires skilled
control involving both predictive assessment of the object
properties to compute the appropriate anticipatory forces,
and reactive adjustments upon haptic contact. Such predictive
forces are essential for a safe and natural handover, which
often requires a response faster than the human feedback
loop dynamics [2].

A handover action can roughly be divided into three main
phases [3], [4]: the passer transport phase, the physical
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handover, and the receiver transport phase. The passer and
receiver pose two separate control systems, each of which
has to plan and execute individual movements while con-
sidering the partner’s behaviour and the properties of the
manipulated object. One of the main challenges in a handover
is synchronizing the two involved control systems within
the physical handover phase, i.e., the passer decreases and
the receiver increases grip force simultaneously, effectively
reducing physical handover time to a minimum [3], [4]. Due
to intrinsic system delays in most robotic hands and grippers
and neural delays in humans [2], such synchronization can
only be achieved by accurately predicting the partner’s
movements and the object’s physical properties. Leveraging
these human predictive capabilities and representing them is,
therefore, crucial to enable a fluent R2H handover action.

Human predictions can be informed by cues. In the
specific case of a handover, these cues include both visual
appearance (e.g., size, shape, and material) of the object,
and movement kinematics of the passer. Indeed, a variety
of cues have been shown to drive predictive forces during
manipulation [5], [6], [7], [8], [9]. While humans have the
ability to learn to associate arbitrary cues (e.g. color) with an
object’s physical properties, such as weight, cues on familiar
features are much stronger [10].

In simple object manipulation, humans exhibit unique
movement characteristics coupled to an object’s weight.
For example, when an object is lighter, the delay between
finger contact and lift tends to be lower [11], [12] and it is
lifted up and transported with higher velocities [12]. When
receiving an object of identical appearance that is lifted
and transported with different movement kinematics, there
is evidence that humans could use this as a cue about the
object’s weight leading to the receiving partners adjusting
their motor commands accordingly [13]. Similar to how we
can learn dynamics from observation of other people’s kine-
matics [14], previous work has demonstrated that perception
of an object’s weight can be modulated by observing another
agent’s different movement trajectories [15]. Overall, humans
continually use a range of cues, including object properties
and kinematics of partners, to estimate the object mass and
tune our predictive control for skilful manipulation.

While it has been shown that predictability is essential
to allow for smooth collaboration [4], [13], [16], [17], [18],
there has been little to no research that explores or vali-
dates such features in R2H handover – despite the obvious
motivation, and considering that current robotic hands and
grippers are not capable of performing real-time reactive
motions. In H2H handover, visual feedback during the passer

2024 IEEE-RAS 23rd International Conference on Humanoid Robots (Humanoids)
Nancy, France. November 22-24, 2024

979-8-3503-7357-8/24/$31.00 ©2024 IEEE 173



Fig. 1. Experimental setup and design. A) Virtual grasping setup with two haptic robots, connected to the participant’s index and thumb. A monitor-
mirror system provides visual feedback of the simulation. B) Visual on-screen feedback as viewed by participants, grey cursors represent thumb and index
fingertips, teal cursors represent the virtual agent grasping and transporting the object. C) Experimental Design. Task practice was followed by an initial
random part, a blocked part, and a second random part. The height of the bars indicates object weight in individual trials. D) Exemplary grip (blue) and
load force (red) and vertical object position (orange) traces across the trial. Dashed lines indicate different states of the trial.

transport phase is crucial to enable predictive mechanisms in
the handover phase [16]. Furthermore, recent work showed
that when humans hand over objects of identical visual
appearance, but different weight to another human, the passer
exhibits slightly different movement patterns which allow
the receiver to scale grip force rates to object weight [13].
However, we do not know whether this is also true for R2H
handovers. First, such cues may not fully transfer to robot-
human scenarios, as humans exhibit different behaviour
when collaborating with robots compared to humans [19],
[20], [21]. Second, it is unclear if movement patterns at the
hand level are the only non-verbal cue humans use to make
a prediction about the object’s weight and, most importantly,
if that information alone is sufficient in a R2H interaction.

Much work in the field of robotics has focused on the
use of speech [22], gaze [23], [24], [25] and kinematics
[26], [27] for communication of intent to initiate and adjust
handover actions to pass or receive an object. While robotic

facilitation and adaptation is an important feat, Ivanova et al.
[18], showed that humans prefer a more predictable artificial
partner and show better performance in joint actions with it.
Humans are adept learners [28] and, in collaborative tasks,
aim to facilitate their partners [29]. In a similar fashion,
we aim to explore robotic motion legibility, making it as
predictable as possible with cues natural to H2H interaction.
It is worth mentioning that while a range of different objects
has been used to investigate R2H handovers, to the best of
our knowledge, no work has studied the effect of kinematic
cues or the gripping response to different object weights
– despite the obvious importance to adaptation and safety
during pHRI.

II. PROBLEM DEFINITION

This work aims to address the above gaps and investigate
whether or not humans are able to interpret the kinematic
cues of an agent similarly to the kinematic cues of another
human in a handover task. Our focus lies specifically on
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using the passer transport phase to non-verbally commu-
nicate information about the passed object weight to the
receiver. Using a virtual environment with a simulated agent
transporting an object, we reduce the information available
to participants to isolate it to movement kinematics directly
related to object grasping, lifting and transport. We hypoth-
esize that humans are able to inherently use this cue and
integrate it into their motor plan for object manipulation.
This work is a building block for the robotics community to
design more transparent and effective R2H handover actions,
understanding and leveraging human response behaviour to
pHRI.

To test this hypothesis, we used a simulated handover
task, where human participants received an object from
an artificial agent. In the virtual environment, participants
received haptic feedback via two haptic robots connected
to their index and thumb, respectively (see Fig. 1A), and
visual feedback via a mirror-monitor system (see Fig. 1B).
In the experiment, the task was to receive an object with
one out of four weights from the agent without dropping it.
The object was identical in visual appearance, but the agent’s
movement was modified according to the weight. Therefore,
the agent’s movement could be used to predict the transferred
object’s weight. To quantify the participants’ prediction of
the object weight, we recorded grip and load forces as well
as maximum vertical object displacement after the handover
action (for exemplary traces, see Fig. 1D).

III. MATERIALS AND METHODS

A. Participants

A total of 10 right-handed [30] volunteers (4 women, 6
men) aged 24 years (SD=1.6) participated in the experiment.
All individuals reported to have normal or corrected to
normal vision, no neurological disorders, and to be free of
acute upper limb injuries. Before the experiment, participants
provided written informed consent. This study was approved
by the institutional ethics committee of the Technical Uni-
versity of Munich.

B. Experimental Setup

We used a custom-built setup, with two haptic robots
(Phantom Premium 1.5 HF, 3D Systems, Rock Hill, USA)
providing position and force feedback, and a monitor-mirror
system providing visual feedback (for a more detailed de-
scription refer to [31] and [32]). The participant’s index and
thumb were connected to a robot each using a custom, 3D-
printed connector and rigid medical tape. The mirror blocked
the view of their hand (see Fig. 1A). Participants were seated
in a chair in a fixed position in front of the system.

In the experiment, participants viewed a virtual environ-
ment, programmed using CHAI3D [33] and Open Dynamics
Engine libraries [34]. Within this environment, the partici-
pants’ finger tips were represented by two dark gray spheres
(see Fig. 1B). Positions and forces in the environment were
sampled at 500Hz, the monitor-mirror system provided visual
feedback at 60Hz.

C. Experimental Paradigm

Participants had to grasp and hold a box-shaped object
that was handed to them by a virtual agent. The object’s
size was 2x4x10cm and the coefficient of friction was 1. The
object was represented as a rigid object (stiffness=700N/m)
with uniform mass distribution and a mass of 100, 200
or 300g in the experiment or 250g in the practice phase.
The agent reached toward the object, lifted it up and then
transported it toward the participant’s hand. The agent’s
movement was therefore split into five intervals: reach, grasp
(cursors move in towards object), hold, lift and transport
interval. We used a standard duration for each interval (from
[15]) and modulated this duration with the object weight
(see Tab. I). That is, a shorter duration and, therefore, faster
movement was applied for a lighter object. For each interval,
the movement trajectory was modelled according to the
minimum jerk model [35].

At the beginning of each trial, participants placed their
fingers on the starting position. The agent, visualised by two
dark blue cursors, then transported the object toward a fixed
position between the fingers. During the agent’s movement,
participants had to remain in the starting positions, otherwise
the trial was restarted. Once the agent reached the final
position, the object was fixed in space for 2s. Within this
time participants had to generate grip and load forces to
take over the object, after which the object was ”released”
(fixation removed) and the gravitational acceleration applied
to the object was linearly increased over a duration of 100ms
from 0 to 9.81m/s2. The task was to hold the object without
dropping it. After 900ms of holding the object, participants
lifted it up by 3 cm to a reference plane to complete the trial.

TABLE I
DURATIONS OF AGENT’S MOVEMENT PHASES FOR DIFFERENT

EXPERIMENTAL CONDITIONS, ADAPTED FROM [15].

Interval Duration in s
Fast Standard Slow Practice

Object Mass in kg 0.1 0.2 0.3 0.25
Reach 1.1000 1.1000 1.1000 1.1000
Grasp 0.0020 0.0200 0.1000 0.0500
Hold 0.0156 0.1560 0.7800 0.3900
Lift 0.4380 0.8760 1.3140 1.0950

Transport 0.5020 1.0040 1.5060 1.2550

Within the experiment, pairs of object mass and trajec-
tories were constant (Tab. I). Participants completed four
experimental parts: a practice, a initial random, a blocked
and a final random part (see Fig. 1C). In the practice,
participants completed 2 blocks of 25 trials, with constant
object mass and agent trajectory. In the first random part
participants completed 6 blocks of 18 repetitions and in
the final random part 3 blocks of 18 repetitions. Within
each block of 18 trials, each of the three mass-trajectory
pairs was presented six times in a pseudo-random order. The
blocked part consisted of 3 blocks of 18 repetitions, where
the mass-trajectory pair was constant within a block. Before
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the task practice, participants completed 15 repetitions of an
object lifting task (see [31]) with an object weighing 250g
to familiarize themselves with the setup.

D. Data Analysis

We calculated grip and load forces generated by the
participant from the forces produced by the haptic robots
and the object orientation in the virtual environment. Grip
force (GF ) is the normal component of digit force with
respect to the object’s surface and the load force (LF ) is the
vertical digit force component normal to the ground. Both
forces were filtered with a 6th-order zero-phase butterworth
low pass filter with a 20Hz cutoff. Using this data we
then detected the anticipatory grip (GFant.) and load forces
(LFant.), that were defined as the mean of generated forces
from 20ms before, to the start of the release of the object
by the agent. Therefore, they were purely predictive and
provide an accurate measure of the participant’s prediction
of the object weight. Finally, we found the maximum vertical
deviation of the object after the handover, by detecting the
largest magnitude of displacement in either direction.

To intuitively summarize the relationship of outcome vari-
ables between all object weights, we pooled values over six
repetitions (random) or 18 repetitions (blocked) per weight
and participant, and fit a linear function to the means

y = a+ bx. (1)

This resulted in intercept (a) and slope (b) values that
provided a block-wise quantification of adaptation.
In the statistical analysis, p-values less than 0.05 were
considered statistically significant and were denoted with ∗
(p<0.05), ∗∗(p<0.01), and ∗ ∗ ∗ (p<0.001).

IV. RESULTS

Participants were repeatedly handed objects of different
weights by an artificial agent. The agent’s movements were
adapted to the respective object weight, that is, the agent
moved faster when handling a lighter object and slower
when handling a heavier object (see Tab. I). All participants
reported to have recognized the trajectory of the reaching
movement as a cue to the object’s weight after the experi-
ment.

A. Blocked

We first examine adaptation within the practice and
blocked part of our experiment, to ensure that partici-
pants were generally able to adapt both grip and load
forces to the task demands. In the practice and blocked
part of the experiment, participants were repeatedly handed
an object with identical mass and agent trajectory. Par-
ticipants clearly adjusted their grip force profile to the
object weight (see Fig. 2, for exemplary participant).
This modulation occurred before the start of the release,
therefore, when no information about the object weight
was provided. Consequently, the anticipatory grip force
across participants varied with the agent kinematics indi-
cating object weight (RMANOVA: F(2,18)=20.02, p<0.001;

Fig. 2. Averaged grip force profiles for one participant over 18 repetitions
of the same object weight (blocked part of experiment). Start and end times
of physical handover are indicated by the dashed vertical lines.

Fig. 3. Anticipatory grip and load forces and max. vertical displacement
in the blocked parts of the experiment (Practice, Blocked). Large markers
indicate mean values, error bars indicate standard error across participants.
Small markers indicate individual participant data. Background shading
shows practice (dark gray) and blocked (light gray) parts of experiment.
A) Anticipatory grip force B) Anticipatory load force C) Maximum vertical
object displacement.

ttest:100g–200g T(10)=-9.00, pcorr. <0.001; ttest:100g–
300g T(10)=-5.00, pcorr.=0.002; ttest:200g–300g T(10)=-
3.30, pcorr.=0.028; see Fig. 3A). We also observed some
reduction between the first and second block of practice,
indicating adaptation to the task after the initial trials.
However, evaluation of trial-by-trial values showed that
this adaptation occurred mostly within the first 10 tri-
als and levelled off afterwards (see Fig. 4). Despite no
requirement to minimize vertical movement, participants
also scaled anticipatory load forces to the object’s weight,
when exposed to the same object repetitively multiple times
in a row (see Fig. 3B). A RMANOVA (F(2,18)=84.76,
p<0.001) and post-hoc ttest revealed that these differ-
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Fig. 4. Evolution of GFant. across full experiment. Background shading indicates different parts of the experiment (practice, random, blocked, random).
Markers show the mean, error bars the standard error of forces averaged across participants. In practice trials, participants initially overshoot anticipatory
grip forces, then reduce to a stable value after ca 15 repetitions. In random parts, participants progressively learn to anticipate the different object weights
over the initial 12-18 repetitions of each object weight. In the blocked part of the experiment, this adaptation is even stronger, but returns to similar
values in the second random part compared to the first random part. Consequently, participants already learned to understand cues and to adapt their motor
commands according to the cues in the initial random presentation.

ences were statistically significant (100g–200g T(10)=-5.17,
pcorr. <0.001; 100g–300g T(10)=-13.48, pcorr. <0.001;
200g–300g T(10)=-7.54, pcorr. <0.001). However, it is
noticeable that the anticipatory grip forces showed a much
higher scaling than anticipatory load forces in this part of
the experiment. The object displacement shows that while
anticipatory load forces were applied proportionally to the
object’s weight, this scaling was also evident in the vertical
displacement after the handover. The largest displacement
(object mass = 300g) was, on average, 8mm (see Fig.
3C). Again, a RMANOVA (F(2,18)=15.87, p<0.001) and
post-hoc ttest (100g–200g T(10)= 2.91, pcorr.=0.052; 100g–
300g T(10)=4.28, pcorr.=0.006; 200g–300g T(10)=3.95,
pcorr.=0.010) revealed that most of the differences between
object weights were statistically significant. Overall, this
data shows that our setup and experimental task allowed
participants to adapt grip and load forces in anticipation to
the agent-human handover. Further, grip force profiles before
handover do not significantly vary from those observed when
interacting with physical objects, showing that participants’
interaction forces in our simulation is generally similar to
those generated when manipulating physical objects.

B. Random

After the practice phase, participants were repeatedly
handed one of three different objects that varied only in
weight but not in physical appearance. The agent trajectory
was always matched to the same object weight, such that
it could be used as a cue. We compared outcome vari-
ables across the full experiment (see Fig. 4 for GFant.).
We could summarize block-wise adaptation with intercept
(a) and slope (b) values (see Eq. 1). The resulting slopes
and intercepts for both random and blocked parts of the
experiment and all outcome variables are shown in Fig. 5.

a) Anticipatory Grip Force (GFant.): After some
trials where the GFant. was scaled similarly for all object
weights, participants learned to adapt the GF in a predictive
manner (see Fig. 4). While the separation between weights

was stronger in the blocked compared to the random part
of the experiment (Fig. 5A), it was already clearly present
after 12-18 repetitions per object weight in the initial
random phase. The GFant. shows a clear adaptation over
the initial three random blocks, after which both slope and
intercept remain constant (Fig. 5A). The slope increased
in the first block of trials to the third block of trials,
where on average GFant increased by 0.87N per 100g of
object mass. In the context of GF , the intercept may be
interpreted as baseline grip force or safety margin [36];
that is, the level of grip force applied minus the minimal
level of grip force required to not let the object slip. A
reduction of the intercept, therefore, can be interpreted
as a reduced safety margin. Similar to the increase in
slope, the intercept decreased during the first three blocks
of trials. A RMANOVA indicated that while interaction
between different object masses was not significant in the
initial block (F(2,18)=1.23, p=0.315), it was significant
in the stable blocks (2-8) (F(2,18)=9.82, p=0.001). Post-
hoc paired t-tests with Bonferroni correction revealed
significant differences between all pairs of weights (100g–
200g: T(10)=-3.09, pcorr.=0.039; 100g–300g: T(10)=-3.19,
pcorr.=0.033; 200g–300g: T(10)=-3.02, pcorr.=0.044; see
also Fig. 6A). Comparing blocked and random parts of
the experiment, our data show a higher slope and lower
intercept in the blocked parts, indicating that participants’
prediction was further improved when the same object
weight was presented repetitively.

b) Anticipatory Load Force (LFant.): In contrast, the
LFant. did not show the same pattern as the grip forces
(Fig. 5B). While a clear separation was present in the
blocked part of the experiment (see Fig. 3B), in the random
parts, LFant. values converged to similar levels for different
object weights, resulting a slope approaching 0. At the
same time, the intercept reduced. Therefore, LFant. was
not scaled according to object weight, and reduced over the
course of the experiment when the order of object weights
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Fig. 5. Slope and intercept values across full experiment for GFant. (blue)
and LFant. (red) in A) and maximum vertical object displacement (orange)
in B). Values for the blocked part of the experiment are shown on the right
side of individual plots, values for the random parts of the experiment are
shown on the left side and initial and second random parts are separated by
a dashed line.

was random. A RMANOVA showed that while interaction
between different object masses was significant in the initial
block (F(2,18)=8.98, p=0.002), it was not significant in
the stable blocks (2-8) (F(2,18)=0.59, p=0.567). Post-hoc
paired t-tests with Bonferroni correction revealed significant
differences in the initial phase between 100g and 200g ob-
jects (T(10)=5.12, pcorr.=0.002) and 100g and 300g objects
(T(10)=3.26, pcorr.=0.030), but not 200g and 300g objects
(T(10)=0.20, pcorr.=1.000). These differences disappeared in
the later stable parts of the experiment (see also Fig. 6B). As
excessive LFant. would lead to an upward movement at the
beginning of the handover phase, it is likely that participants
increased LF only when the release action was started to
compensate for gravitational forces.

Fig. 6. Pooled values for outcome variables in initial (first column) and
stable (second column) parts of the experiment. Bars show mean values,
errorbars the standard error across participants. A) Anticipatory grip force
B) Anticipatory load force C) Maximum vertical object displacement.

c) Maximum Vertical Object Displacement: Finally, the
magnitude of the slope of maximum vertical object displace-
ment decreased from the initial to the second random block,
but showed little modulation in the rest of the experiment
(Fig. 5C). The sign of the slope for this value was negative,
indicating that lighter objects were lifted upwards (positive
displacement) and heavier objects were moved downwards
(negative displacement). Similarly, the intercept reduced
from the first to the second block. Therefore, the increase
in slope and reduction of intercept indicate that upward
movement for the lightest object was reduced to a bigger
extent than downward movement of the heaviest object.
When comparing between the initial and stable part of the
experiment, our data show that during the full experiment,
the maximum vertical object displacement differs between
different weights (initial: F(2,18)=84.90, p<0.001; stable:
F(2,18)=32.04, p<0.001). Anticipatory load force does not
seem to predict vertical object displacement. On the contrary,
the reduction of general displacement in the second block of
the first random object presentation indicates that load force
was adjusted in synchrony with the agent’s object release
rather than in a predictive and proportional manner.

V. DISCUSSION

We examined the effect of different trajectories of a
passing agent on the prediction of the object weight by
the receiver in a simulated robot-human handover task.
Even when object weights are presented in a random order,
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participants gradually learned to produce grip forces in an
anticipatory manner. That is, they interpreted the kinematic
cue to predict the transported object weight and form a
corresponding motor command. In contrast, predictive load
forces were not scaled to the object weight when presented
in a random order, even though scaling occurred in the
blocked presentation. Finally, the vertical object displace-
ment reduced during random object presentation, but did not
reach the same performance as during blocked presentation.

A. Predictive mechanisms in H2H handover

A number of studies have previously investigated H2H
handovers and showed that predictability is a key factor in
efficiently handing over objects. For example, visual feed-
back during the passer transport phase is crucial to enable
predictive control mechanisms in the physical handover [16].
Further studies showed passer lift delay and maximum lift
velocity provided sufficient cues about object weight for
receivers to scale their grip force in an anticipatory manner
[13]. However, other parameters such as posture of the passer
were not recorded in this work. As the used weights ranged
from 400g to 1000g, such postural differences could provide
an additional cue to the receiver. We extend this prior work
[13] by isolating the effect of passer kinematics through
use of a simulated agent and showing it provides sufficient
information to predict object weight.

B. Predictive mechanisms in R2H handover

While [16] expanded their work on H2H handovers to a
R2H handover, they did not include any grasp or reach move-
ments of the robotic partner. Therefore, cues to enable more
advanced predictive human motor control were given. Other
work investigated preference of and reaction times of human
receivers to different movement trajectory shapes [37], [38]
in R2H handovers, but to the best of our knowledge, we are
the first to show that humans are able to integrate grasp-lift-
transport trajectories to anticipate different object weights.

C. Cues in predictive human motor control

Based on our knowledge of human pick-lift-replace and
pick-lift actions (e.g. [11], [12], [13]), we used a cue that
participants should intuitively be able to integrate to form
a prediction about the transported object’s weight. It has
been shown that familiar cues result in stronger association
compared to arbitrary cues [10]. While we clearly show that
participants recognized the cue, and after some repetitions
adapted their motor behaviour to reflect accurate predictions
of object weight, an intuitive cue should lead to immediate
adaptation of motor behaviour. For example, Kopnarski and
colleagues [13] demonstrated in an H2H handover where
weights were randomly interchanged, the receiving partner
immediately adapted their grip force rates to the expected
weight. In pick-lift-replace tasks, humans commonly adapt
their motor behaviour after one trial [6], [39], even if pre-
sented with more than one object weight [9]. This extended
adaptation phase could be related to performance of the task
in a virtual environment [31], [32]. Additionally, participants

were informed that they were handed the object by an
artificial agent, not a human partner. Both of these factors
could have led to prolonged adaptation of motor behaviour in
our participants. Consequently, follow-up studies will have
to show if the reason for longer adaptation times is based on
the intuitiveness of kinematic cues or on other factors.

D. Predictive adaptation of grip and load forces

We observed a clear difference between adaptation of
grip and load forces and the vertical object displacement
in the random parts of the experiment (Fig. 5). After some
repetitions (≈12-18 per weight) participants grip force in-
dicates successful adaptation (Fig. 5A). In the same time
frame, predictive load force production decreased to a stable
value across different object weights (Fig. 5B). As indicated
by the development of vertical object displacement (Fig.
5C), participants nonetheless manage to produce sufficient
compensatory forces to hold the object somewhat stationary.
Therefore, we assume that the decreased scaling of antici-
patory load force actually indicates a better synchronization
of participants with the ”release” of the agent, enabled by a
better prediction of the time of release. While grip and load
forces in object manipulation are usually coupled [40], it has
been shown that this is not always the case [41], [42]. The
fixed time from stop to release in our task may have lead to
the observed decoupling of the two forces.

Finally, we assume that the reduction of object dis-
placement occurs earlier (after ≈6 repetitions per weight)
compared to that of anticipatory grip force (after ≈12-18
repetitions per weight), as participants receive a clear error
signal in the case of object displacement, which is not present
for grip force. If the object were deformable or could break
when applying excessive grip forces, we would expect this
adaptation to occur in similar time-frame as the vertical
object displacement.

VI. CONCLUSION

We demonstrate that humans are able to predictively scale
their grip forces according to the expected weights in a
simulated agent-human handover task simply by exploring
the agent’s motion profile, addressing an important gap in
the literature related to legibility and predictability during
pHRI. Furthermore, based on thorough experimental results,
this work aims to formally inform future developments and
applications in robot-human physical handovers and gen-
eral physical robot-human collaboration. Using human-like
movement kinematics, we demonstrate a more predictable
and, therefore, intuitive handover action. Finally, while this
work aimed to evaluate the sufficient conditions for pre-
dictability and adaption based solely on the object’s motion
profile, in future work we aim to explore the performance of
such adaptability when interacting with embodied robots.
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