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Abstract. Prior work has shown that independent motor memories of opposing
dynamics can be learned when the movements are preceded by unique lead-in
movements, each associated with a different direction of dynamics. Here we
examine generalization effects using visual lead-in movements. Specifically, we
test how variations in lead-in kinematics, in terms of duration, speed and dis-
tance, effect the expression of the learned motor memory. We show that the
motor system is more strongly affected by changes in the duration of the
movement, whereas longer movement distances have no effect.

1 Introduction

Recent studies have highlighted some of the critical aspects for rehabilitation of neu-
rological disorders or injuries using robotic systems [1]. Continuing progress depends
on understanding the mechanisms of human sensorimotor learning in order to deter-
mine the optimal presentation of sensory information to improve the rate, retention and
generalization of adaptation. Studies in healthy humans have shown that interference of
simultaneous learning of opposing dynamics can occur, preventing learning in the
absence of appropriate sensory cues [2]. Our recent work has shown that in such cases
both prior movement [3, 4] and future movement [5] can be used to cue the learning of
independent motor memories where the effect, at least for future movements, depends
on the planning of the movement rather than the execution [6].

These phenomena, along with the requirement of close temporal association,
whereby the lead-in or follow-through movement needs to occur within 500 ms of the
adaptation movement [3], has suggested a strong link with the theory of neural pop-
ulation dynamics [7, 8]. In this framework movements are prepared in neural space and
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then unfold according to the temporal evolution of a dynamical system. These asso-
ciated movements affect the learning rate, the generalization and the interference seen
as participants learn novel dynamics. Previous work has demonstrated that the neural
tuning functions of lead-in movements exhibit Gaussian-like angular tuning [9–11].
Here we further characterize this tuning as the distance, speed and duration of the
visual lead-in movement are varied.

2 Materials and Methods

2.1 Experimental Design

Eight participants (6 female; aged 27.4 ± 6.7 years, mean ± SD) performed the
experiment over two days (*3 h per day). All participants were right handed, naïve to
the aims of the study, and provided written informed consent before participation. The
study was approved by the University of Cambridge Ethics Committee.

Experiments were performed using a vBOT planar robotic manipulandum [12].
Participants grasped the robot handle in their right hand while their right forearm was
supported by an air sled, constraining armmovement to the horizontal plane. Participants
could not view their hand directly. Instead veridical visual feedback was used to overlay
images of the cursor, starting location, via point, andfinal target in the plane ofmovement.
Details of the apparatus and experimental design can be found in our prior work [9, 10].

Each trial consisted of a two-part movement: a lead-in movement (a distinct
movement of the hand or cursor) followed immediately by an adaptation movement.
Here the lead-in was a minimum jerk visual motion of the cursor from the start to the
via-point, while the participant’s hand remained stationary at the via-point location.
The adaptation movement was then actively performed by the participants from the via-
point to the final target during which either a null field, a curl force field or a
mechanical channel was applied. The lead-in movement was always oriented at either
+45° or −45° to the adaptation movement, where the direction of each lead-in
movement was uniquely associated with the direction of curl force field. For training
trials the adaptation movement was performed in a null field (pre-exposure phase) or
force field (exposure phase), and the lead-in movement was always 10 cm distance
with 700 ms duration.

Generalization of the learning associated to the lead-in movement was tested with
different lead-in kinematics using channel trials. On these trials, the lead-in movement
was chosen from one of 15 different movements with distances ranging from 3 cm to
20 cm and durations ranging between 210 ms to 1400 ms. On all these movements the
adaptation movement was always performed within a mechanical channel [13] such
that any predictive learned compensation could be measured from the force exerted into
the channel.

Experiments started with the pre-exposure phase (262 trials) in which participants
made movements in the null field. During the exposure phase (2816 trials over two
days), the two opposing curl force fields were introduced on the adaptation movement.
During both the pre-exposure and exposure phases, generalization movements were
performed on random trials to obtain a baseline measurement and test the extent of
generalization after adaptation.
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2.2 Analysis

Experimental data was analyzed offline using Matlab. Kinematic error (maximum
perpendicular distance) was calculated on the null and force field trials. The level of
force compensation [14] was assessed on channel trials for different lead-in motions to
examine the generalization functions.

3 Results

When presented with the curl force field, participants’ adaptation movements were
disturbed, producing large errors that were gradually reduced over the exposure phase.
Over a similar timescale, force compensation increased, reaching approximately 90%
compensation for both force fields.

In the generalization movements, the force compensation decreased as the lead-in
movement deviated further away from the trained movement for duration, distance, or
peak speed (Fig. 1). However, this fall-off was smallest when duration was matched
(red), with almost no decrement up to 20 cm lead-in distance. In contrast, when peak
speed was matched (green) the generalization falloff was greatest as duration (and
therefore distance) were varied.

4 Discussion

In this study we examined the generalization of learning with variations in the visual
lead-in kinematics. We found that as movement duration or peak speed deviate from
the training movement, the expressed force compensation decreases. However, while
shorter distances exhibit a similar fall off, increases in distance produced no change in
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Fig. 1. Generalization of the predictive force compensation (mean ± se) as the lead-in
movement duration, speed and/or distance are varied away from the trained lead-in movement
values (dotted line). The plot title shows the kinematic measure that was matched to the training
movement while variations in the other measures occurred. Note that measures are not
independent such that both duration and speed vary if distance is fixed.
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the force. These results further characterize the neural tuning of the lead-in movements,
extending beyond the directional tuning seen previously [9–11]. We suggest that these
affects may arise through state estimation, whereby multiple sensory signals are
combined with efference copy to estimate the future location of the limb. It has been
shown that variability in the lead-in movements can affect the speed of adaptation
depending on the size of this generalization function [4]. Our current results suggest
that variations in the speed or duration of these lead-in movements could provide
similar decrements in learning rate, and such variations should therefore also be
minimized to maximize learning speed of novel dynamics.
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