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Osu, Rieko, David W. Franklin, Hiroko Kato, Hiroaki Gomi,
Kazuhisa Domen, Toshinori Yoshioka, and Mitsuo Kawato.
Short- and long-term changes in joint co-contraction associated with
motor learning as revealed from surface EMG. J Neurophysiol 88:
991–1004, 2002; 10.1152/jn.00943.2001. In the field of motor control,
two hypotheses have been controversial: whether the brain acquires
internal models that generate accurate motor commands, or whether
the brain avoids this by using the viscoelasticity of musculoskeletal
system. Recent observations on relatively low stiffness during trained
movements support the existence of internal models. However, no
study has revealed the decrease in viscoelasticity associated with
learning that would imply improvement of internal models as well as
synergy between the two hypothetical mechanisms. Previously ob-
served decreases in electromyogram (EMG) might have other expla-
nations, such as trajectory modifications that reduce joint torques. To
circumvent such complications, we required strict trajectory control
and examined only successful trials having identical trajectory and
torque profiles. Subjects were asked to perform a hand movement in
unison with a target moving along a specified and unusual trajectory,
with shoulder and elbow in the horizontal plane at the shoulder level.
To evaluate joint viscoelasticity during the learning of this movement,
we proposed an index of muscle co-contraction around the joint
(IMCJ). The IMCJ was defined as the summation of the absolute
values of antagonistic muscle torques around the joint and computed
from the linear relation between surface EMG and joint torque. The
IMCJ during isometric contraction, as well as during movements, was
confirmed to correlate well with joint stiffness estimated using the
conventional method, i.e., applying mechanical perturbations. Ac-
cordingly, the IMCJ during the learning of the movement was com-
puted for each joint of each trial using estimated EMG-torque rela-
tionship. At the same time, the performance error for each trial was
specified as the root mean square of the distance between the target
and hand at each time step over the entire trajectory. The time-series
data of IMCJ and performance error were decomposed into long-term
components that showed decreases in IMCJ in accordance with learn-
ing with little change in the trajectory and short-term interactions
between the IMCJ and performance error. A cross-correlation analysis
and impulse responses both suggested that higher IMCJs follow poor

performances, and lower IMCJs follow good performances within a
few successive trials. Our results support the hypothesis that vis-
coelasticity contributes more when internal models are inaccurate,
while internal models contribute more after the completion of learn-
ing. It is demonstrated that the CNS regulates viscoelasticity on a
short- and long-term basis depending on performance error and finally
acquires smooth and accurate movements while maintaining stability
during the entire learning process.

I N T R O D U C T I O N

Muscle and peripheral reflex loops possess springlike prop-
erties that pull joints back to equilibrium positions by gener-
ating restoring forces against external perturbations. This vis-
coelasticity can be regarded as the peripheral feedback control
gain, which is adjustable by regulating muscle co-contraction
levels and reflex gains. It has been hypothesized that by ex-
ploiting this viscoelasticity (Mussa-Ivaldi et al. 1985), the CNS
can control the limbs by simply commanding a series of stable
equilibrium positions aligned along the desired movement tra-
jectory (equilibrium-point control hypothesis) (Bizzi et al.
1984; Feldman 1966; Flanagan et al. 1993; Flash 1987; Hogan
1984). This theory, however, requires that viscoelastic forces
increase as the movement speeds up, because the dynamic
forces acting on the multijoint links grow in rough proportion
to the square of the velocity. On the other hand, the alternative
hypothesis, referred to as internal model control, enables the
realization of fast and accurate movements even with low
viscoelastic forces. Under this hypothesis, the CNS learns
internal models that simulate the dynamics of the musculoskel-
etal system and external environment and generates the re-
quired feedforward motor commands (Bizzi and Mussa-Ivaldi
1998; Kawato et al. 1987; Miall et al. 1993; Shidara et al.
1993).

It has been a matter of controversy whether the CNS relies
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on high viscoelastic forces without internal models or utilizes
acquired internal models with low viscoelastic forces (Gomi
and Kawato 1996; Gribble and Ostry 2000; Gribble et al. 1998;
Katayama and Kawato 1993; Koike and Kawato 1993; Lackner
and Dizio 1994; Latash and Gottlieb 1991). Recent observa-
tions on relatively low stiffness levels during well-trained
movements support the existence of internal models (Bennett
et al. 1992; Burdet et al. 2000, 2001; Gomi and Kawato 1996).
On the other hand, reports that EMG is higher in a novel
environment than a normal environment (Basmajian and De
Luca 1985; Bernstein 1967; Milner and Cloutier 1993; Thor-
oughman and Shadmehr 1999) indirectly suggest that the vis-
coelasticity at the beginning of learning may not be as low as
that after extensive training. In other words, the CNS may rely
on viscoelastic forces more heavily at the beginning of learning
when internal models are poor, and it may gradually increase
the internal model contribution as learning proceeds, resulting
in decreases in the viscoelasticity. Although several studies
have tried to model such a dual strategy (Flash and Gurevich
1997; Gribble and Ostry 2000; Katayama et al. 1998; Wang et
al. 2001), no previous experimental study has clearly proven
the existence of pure decreases in viscoelastic forces that
would imply improvement of internal models. The observed
decrease in electromyogram (EMG) during learning in previ-
ous studies might have other explanations, such as trajectory
modifications leading to reduced joint torques or lower reflex
contributions due to the attenuation of external perturbations.
One way to circumvent such complications is to require strict
trajectory control and look only at successful trials having
identical trajectory and torque profiles.

In this study, we developed a novel method to evaluate
viscoelastic forces around the joint using EMG signals and
inferred changes in viscoelasticity associated with learning.
We also investigated short-term interactions between perfor-
mance errors and viscoelastic forces by time-series analysis.
Our findings suggest that the relative contributions of internal
model control and viscoelasticity to the final motor command
are adaptively regulated on a long-term and short-term basis.

M E T H O D S

Experimental design

The experiments consisted of two parts. First, we proposed an index
of muscle co-contraction around the joint (IMCJ) computed from
surface EMG and joint torques, and compared the IMCJ with stiffness
measured using the conventional method, i.e., applying mechanical
perturbations (method evaluation). Then, we performed a second
experiment in which we elucidated learning-associated changes in
viscoelasticity using the proposed IMCJ. Six healthy subjects partic-
ipated in the learning experiments (4 males and 2 females; ages 20–36
years; 1 male was left-handed). Two of the six also participated in the
method evaluation experiments under the isometric condition. Three
other subjects participated in the method evaluation experiment under
the dynamic condition (2 males and 1 female; ages 29–34). The
institutional ethics committee approved the experiments, and the
subjects gave informed consent prior to participation.

Definition of the IMCJ

Gomi and Kawato (1996) and Burdet et al. (2000, 2001) measured
stiffness during multijoint arm movements using a high-performance
computer-controlled mechanical interface [Parallel Link Direct-Drive

Air-Magnet Floating Manipulandum (PFM)] to displace the hand
slightly during each movement and measure the restoring force.
Unfortunately, these methods require many trials so they cannot be
used to observe progressive changes in the stiffness that accompanies
learning. Based on a report that the surface EMG is highly correlated
with the static stiffness (Osu and Gomi 1999), and that the joint
stiffness is highly correlated with the joint torque (Gomi and Osu
1998; Hunter and Kearney 1982), we propose the following index for
evaluating joint stiffness, using surface EMG instead of direct mea-
surements.

If rectified surface EMG signals are assumed to be proportional to
isometric muscle tension (Basmajian and De Luca 1985), the joint
torque can be expressed as the difference between the flexion torque
exerted by the flexor muscles (weighted muscle tension) and the
extension torque exerted by the extensor muscles

�s � c1u1 � c2u2 � c5u5 � c6u6

�e � c3u3 � c4u4 � c7u5 � c8u6 (1)

Here, �s and �e denote the shoulder joint torque and elbow joint
torque, respectively. ui denotes an individual muscle activity, which is
assumed to be proportional to the rectified and averaged surface EMG
signals. u1 and u2 denote the activity of shoulder monoarticular flexor
and extensor muscles, u3 and u4 denote the activity of elbow mono-
articular flexor and extensor muscles, and u5 and u6 denote the activity
of biarticular flexor and extensor muscles. The parameters ci include
both the moment arm and conversion factor from the muscle activity
(rectified and averaged EMG) to muscle tension. The parameters ci are
all constants, as long as the moment arm is assumed to be constant.
Supposing that each muscle stiffness term is proportional to the
corresponding muscle torque (weighted muscle tension; ciui in Eq.1)
(Gomi and Osu 1998; Hunter and Kearney 1982), we may be able to
use the summation of muscle torques as a measure for the joint
stiffness. Therefore we define IMCJ as follows

Ss � c1u1 � c2u2 � c5u5 � c6u6

Se � c3u3 � c4u4 � c7u5 � c8u6 (2)

Here, Ss and Se denote the IMCJ at the shoulder and elbow, respec-
tively. Simultaneous increases in antagonistic muscle torques do not
increase the joint torque (Eq.1), but do increase the IMCJs because the
IMCJs are the summations of the absolute values of antagonistic
muscle torques (Eq.2).

At a given level of activity, muscle tension nonlinearly depends on
length and velocity. Accordingly, muscle stiffness also depends on length
and velocity (Winters 1990), which means that surface EMG does not
linearly correlate with dynamic stiffness. Further, moment arms of some
muscles (e.g., pectoralis major, posterior deltoid, and brachioradialis)
change during movements (Kuechle et al. 1997; Murray et al. 1995;
Winters 1990). However, we assumed linear length-tension, velocity-
tension curves, and constant moment arms, and approximated dynamic
muscle stiffness by the weighted summation of muscle activities using
parameters ci, estimated by isometric tasks. Although these simplifica-
tions were obviously wrong and might have caused error, the error was
the same for each identical movement during learning and therefore it
was possible to quantify changes in stiffness across time.

The validity of the IMCJ proposed above was assessed by the
following experiments under both isometric and dynamic conditions.

Evaluation of IMCJ as a good measure of stiffness

For the evaluation using isometric tasks, the subjects gripped the
handle of a force sensor and were instructed to produce a specified
force (0, 5, or 10 N) in a specified direction (16 directions in the
hand’s x-y plane at even intervals) without co-contraction (Fig. 1A).
The current force vector applied by the hand to the handle and a small
cross indicating the target force were displayed on a computer mon-

992 OSU, FRANKLIN, KATO, GOMI, DOMEN, YOSHIOKA, AND KAWATO

J Neurophysiol • VOL 88 • AUGUST 2002 • www.jn.org



itor. The right forearm of the subjects was fixed to a molded plastic
cuff tightly coupled to the handle and supported in the gravity direc-
tion by a beam. The wrist joint of the subjects was fixed by the cuff,
and only shoulder and elbow joint rotations in the horizontal plane
were permitted. During the experiment, each subject’s hand was kept
at the coordinate of [x,y] � [0.0,0.35] m. The subjects were required
to keep the head of the force vector on the target during each
experimental set to preserve the constant external force. Additionally,
rectified and filtered surface EMG signals (moving average, 0.5 s) of
six muscles were displayed in a bar graph. A reference line was
marked on the EMG bar graph. The reference line consisted of the
rectified and filtered surface EMG signals of six muscles that were
determined by requesting target force exertion before each experi-
mental set. The subjects were also asked to keep the EMG bar graph
the same as the reference line so that the muscle activity would be
constant during each set. The stiffness was measured at the same time
by applying small perturbations using the PFM. The hand was slightly
pushed and pulled back in eight randomized directions within a brief
period (6–8 mm, 0.3 s, 8 directions, 3 times for each set). The subjects
were asked not to intervene voluntarily during the perturbations. The
details of the arm-impedance estimation method are provided else-
where (Gomi and Kawato 1995, 1997; Gomi and Osu 1998).

The EMG was recorded from a shoulder monoarticular flexor
(pectoralis major) and extensor (posterior deltoid), an elbow mono-
articular flexor (brachioradialis) and extensor (lateral head of triceps
brachii), and a biarticular flexor (biceps brachii) and extensor (long
head of triceps brachii). The EMG signals were recorded using pairs
of silver-silver chloride surface electrodes in a bipolar configuration.
Each signal was filtered [cutoff frequency, 25 Hz (low) and 1,500 Hz
(high)] and sampled at 2,000 Hz. The EMG signals were rectified and
averaged for a period of 0.4 s before perturbations. This rectified and
averaged EMG was used as muscle activity ui in Eq.1. The force
exerted by the hand was measured by a force sensor attached to the
handle. The measured force was averaged for a period of 0.4 s. The
joint torque was calculated from the average force using a Jacobian
matrix.

The joint torque was decomposed into muscle torques using pa-
rameters estimated from a linear regression of the joint torque and
measured EMG ui (Eq. 1). All of the parameters ci were estimated by
the least-square-error method. Then, each IMCJ was computed by
summing all the absolute values of flexor muscle torques and the
absolute values of extensor muscle torques related to each joint
(Eq. 2). The computed IMCJs were compared with the stiffness
measured at the same time by applying perturbations (PFM-measured

stiffness). We estimated linear relationships between the PFM-mea-
sured stiffness ([Nm/rad]) and the IMCJs ([Nm]) using the acquired
data so we could convert the IMCJ unit to stiffness unit (rIMCJ).

Because the approximation of dynamic stiffness using IMCJ relies
on oversimplified assumptions such as constant moment arms, linear
length-tension, and velocity-tension curves, we evaluated whether
IMCJ is still applicable for the movement data despite these simpli-
fications. We compared IMCJ, computed by applying isometric
torque-EMG relationship to dynamic EMG, to dynamic stiffness
measured simultaneously. To confirm that the IMCJ represents dy-
namic stiffness, it is important to obtain a wide variety of stiffness
estimates. However, estimating a single dynamic stiffness requires
many more trials than estimating a static stiffness. To acquire enough
variety of stiffness values, we used data from three subjects across
three tasks measured on different days. Each subject learned three
different force-fields (null force-field, velocity-dependent force-field,
and position-dependent force-field) on different days. Before learning
each force-field, the isometric torque-EMG relationships were mea-
sured to estimate parameters ci in the same way as described above
except that no perturbation was given. Then, subjects performed
horizontal point-to-point movement away from the body in one of the
three force-fields. After enough training, stiffness during the move-
ments was measured by applying small positional perturbation to the
hand (Burdet et al. 2000). At the same time, EMG signals were
recorded from six arm muscles, and the corresponding shoulder and
elbow IMCJs were computed using the estimated parameters ci. Each
dynamic stiffness was compared with the corresponding IMCJ. See
APPENDIX 2 for details.

Learning experiments

Six subjects participated in the learning experiments. The learning
experiments themselves consisted of three parts. Prior to the learning
task, the subjects executed isometric contraction tasks, enabling us to
estimate the relationship between the surface EMG and joint torque
(parameters ci in Eq.1) for the calculation of the IMCJs. Then, the
subjects learned reaching movements under strict trajectory control.
After the learning task, the subjects executed isometric contraction
tasks again to confirm that the state of the electrodes after the learning
was not different from that before the learning. From this, we con-
firmed that the electrode interface was not responsible for the ob-
served changes in the surface EMG.

In the isometric contraction tasks prior to and following the learn-
ing task, each subject’s hand was coupled to a force-torque sensor.
The subject was instructed to produce a specified force (0, 5, 10, or 15
N for the prelearning trials and 0 or 10 N for the postlearning trials)
in a specified direction (16 directions). The hand position and the
instructions were the same as in the method evaluation experiment
except that no perturbation was given. The hand force and EMG
signals were recorded in the same way as in the method evaluation
experiments.

In the learning task, the subjects performed reaching movements
with the shoulder and elbow in the horizontal plane at the shoulder
level. Wrist movements were constrained by a brace. The learning
task consisted of moving the hand in unison with a target moving
along a specified trajectory (Fig. 1B). The specified trajectory was
curved inward, which was opposite to the natural curvature of spon-
taneous movements (Nakano et al. 1999). The average of 20 trials of
the subject’s own hand trajectory conforming to a 3.5-cm-wide in-
wardly curved path, performed during practice, was shifted 5 cm away
and used as the target trajectory (no constraint on time was given
during these preparatory 20 trials). The hand start position and end
position, which were shifted away from the original average trajec-
tory, were located at [x,y] � [�0.24,0.37] m and at [x,y] � [0.21,0.39]
m, respectively, i.e., a movement of about 0.5 m performed in ap-
proximately 0.5 s.

Obviously, the execution of such an unusual trajectory with a strict

FIG. 1. A: experimental setup for estimating the electromyogram (EMG)-
torque relationship. B: experimental setup. Dotted curve connecting the start
position and target position denotes an actual trajectory, and the solid curve
denotes a target trajectory. Performance error was determined as the root mean
square of the distance between the hand and target position at each time step
(the mean of the lengths of the gray lines).
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time course requires learning. The applied shift from the original
average trajectory also enhanced the requirement of learning. To
ensure that the subject would learn the accurate geometry and time
course of the target trajectory, only the hand trajectories close to the
target trajectory (�4 cm at each time step) were regarded as success-
ful trials. These operations enabled us to acquire movements having
identical trajectory and torque profiles both at the beginning and at the
end of learning, which was necessary to prove the existence of pure
decreases in the viscoelasticity and implies improvement of internal
models. The current hand and target positions were displayed on a
CRT. After each trial, feedback of the resulting movement was
provided to the subject by replaying the target and hand movements
on the CRT, providing temporal and positional error information.
Hand positions within 4 cm or over 4 cm from the target were
displayed in different colors so that the subject could learn his/her
weak points. The performance error for each trial was specified as the
root mean square of the distance between the target position and the
actual hand position at each time step over the entire trajectory. The
number of trials required was 96–120. Position data were acquired
using the OPTOTRAK system. Surface EMG signals were recorded
from six muscles involved in shoulder and elbow movements in the
same way as in the method evaluation experiment.

Computation of dynamic torque

The position data obtained during the learning trials were digitally
filtered by a fourth-order Butterworth filter with an upper cutoff
frequency of 10 Hz. Derivatives of the position data were calculated
by successively applying a three-point local polynomial approxima-
tion. Ballistic components of the movements were extracted using the
curvature as a threshold to determine the beginning and the end of
each movement [500 (1/m)] (Pollick and Ishimura 1996). Dynamic
torques were calculated through the dynamics equation of a two-joint
arm model using the position data and link parameters estimated from
the link length for each subject (the data of an adult man’s arm
measured with a 3-dimensional scanner as a standard). The mass of
the links was adjusted for each subject by changing the standard value
proportional to the link length of the subject. The inertia moment of
the links was adjusted by changing the standard value proportional to
the third power of the link length of the subject. Viscosity coefficients
were estimated from the absolute average torque for each movement
using the equation in Gomi and Osu (1998). We averaged the absolute
dynamic torques across whole movement durations determined by
curvature criteria (average dynamic torque).

IMCJ during learning

Since IMCJs were correlated with the PFM-measured stiffness
during isometric contraction tasks and dynamic tasks (see RESULTS),
we calculated the IMCJ during the learning of movements. First,
parameters ci in Eq.1 were estimated for each subject from the EMG
signals and joint torques in the isometric contraction tasks executed
before the learning of the movements. The EMG signals during the
movements were rectified and averaged across the entire movement
duration determined by curvature criteria for each muscle. Further, to
roughly examine which part of each movement duration is responsible
for the change, each movement duration determined by the curvature
criteria was divided into the first half and the latter half, and the EMG
signals were rectified and averaged over either the first half or the
latter half of each movement duration. Then, the estimated parameters
ci were applied to the rectified and averaged EMG signals during
movements ui to compute the average torques of individual muscles
(ciui). The IMCJs of the shoulder and elbow were computed as the
summations of the average absolute torques of individual muscles
according to Eq. 2.

Because the parameters ci were computed from isometric data and do
not take into account the changing moment arm or velocity-tension
relation, they do not accurately reproduce muscle torque during move-
ments. The EMG signals required to generate certain muscle torques
were larger during the movements than during the isometric contraction,
probably due to muscle tension-shortening-velocity characteristics. Ac-
cordingly, the IMCJs during the movements computed from isometric
EMG-torque relationships were corrected according to EMG-torque re-
lationships during the movements. Namely, IMCJs were scaled based on
the ratio of dynamic torque to EMG-estimated torque. The dynamic
torque was, as described above, computed from actual movement trajec-
tories using an arm inverse dynamics model and then rectified and
averaged (average dynamic torques). The EMG-estimated torque was
computed according to Eq.1 by applying the isometric EMG-torque
relationship (ci) to the EMG during the movements (ui) and rectified and
averaged in the same way as the absolute dynamic torque. The correction
for the movements from the isometric condition was made for each joint
of each subject. We further re-scaled IMCJ by converting the unit of
IMCJ ([Nm]) to the unit of stiffness ([Nm/rad]), using a linear relation-
ship between the PFM-measured stiffness and the IMCJ estimated in the
method evaluation experiment (rIMCJ).

No matter how strictly we constrained the movements, the joint
torque might have slightly differed from trial to trial, which might
contribute to the stiffness values (Gomi and Osu 1998). To extract the
rIMCJ independent of the joint torque that implies improvement of
internal models, we subtracted the torque-dependent components from
the rIMCJ. Assuming that the average rIMCJ was linearly dependent
on the average dynamic torque, we expressed the average rIMCJ as
the summation of the weighted average dynamic torque, a constant,
and residuals that could not be explained by the joint torque. The
parameters (the weight and the constant) were linearly estimated by
the least square error method. Then, the torque dependent components
were subtracted from the rIMCJ. We called this residual component
the torque-independent rIMCJ.

Bayesian multivariate feedback model for statistical analysis
of time-series data

Progressive changes in viscoelasticity and performance error may be
described by a dynamical system with stochastic noises. To examine the
properties of the system, we can apply time-series analysis to the rIMCJ
and performance error during learning. To draw inferences from the
time-series data, we need to select a suitable hypothetical model to
represent the data. Having chosen a model, it becomes possible to
estimate parameters and use the fitted model to enhance our understand-
ing of the mechanism generating the series. Accordingly, we set up a
statistical model whose structure was designed assuming interactions
between viscoelastic force and performance error (Fig. 2).

The observed rIMCJ and performance error at a certain trial number
were assumed to consist of the following three components: 1) a
smooth and long-term change in the mean level of the rIMCJ and
performance error, expressing a gradual decrease with the progress of
learning (nonstationary trend components); 2) short-term fluctuating
components depending on previous trials, describing interactions be-
tween rIMCJ and performance error and able to be expressed as an
auto-regressive (AR) model (cyclical components); and 3) observa-
tion noise. The rIMCJ and performance error can be expressed as
follows

R�n� � r�n� � tr�n� � �r�n� �r � N�0,10�4� (3)

E�n� � e�n� � te�n� � �e�n� �e � N�0,10�4� (4)

Here, n (1 � n � N) denotes the current trial number. Current rIMCJ
R(n) is composed of cyclical component r(n), trend component tr(n),
and observation noise �r(n). Current performance error E(n) is com-
posed of cyclical component e(n), trend component te(n), and obser-
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vation noise �e(n). N(m, � 2) is the normal distribution with mean m
and variance �2. Trend components are modeled in the form of the
following second-order stochastic difference equations

tr�n� � 2 � tr�n � 1� � tr�n � 2� � �tr�n� �tr � N�0, �tr
2 � (5)

te�n� � 2 � te�n � 1� � te�n � 2� � �te�n� �te � N�0, �te
2 � (6)

Here, �tr(n) and �te(n) denote system noise. The order of the two is
selected to extract low-frequency components as the mean-nonstation-
ary trends.

The following information regarding the short-term interaction
between the rIMCJ and performance error was incorporated into the
model describing cyclical components: 1) current rIMCJ may change
according to the performance errors in the previous trials (feedback
from performance error to rIMCJ), and 2) A high rIMCJ is assumed
to decrease the current performance error but is unlikely to have an
effect on subsequent performance errors (instantaneous response of
performance error to rIMCJ). Therefore the cyclical components in
Eqs.3 and 4 are described by the following special form of a multi-
variate auto-regressive model allowing instantaneous responses

r�n� � �
m�1

M

Arr�m�r�n � m� � �
m�1

M

Are�m�e�n � m� � �r�n� �r � N�0, �r
2� (7)

e�n� � Q � r�n� � �
m�1

M

Aee�m�e�n � m� � �e�n� �e � N�0, �e
2� (8)

Here, r(n) is assumed to depend on the rIMCJ, performance errors of
the previous M trials [r(n � m), e(n � m), 1 � m � M], and system
noise �r(n). e(n) is assumed to decrease with current rIMCJ [Q � r(n),
Q � 0] and to depend on the performance errors of the previous M
trials [e(n � m), 1 � m � M] and system noise �e(n).

This model is formulated as an extended Bayesian multivariate
feedback (BMF) model (Kato and Kawahara 1998; APPENDIX 1). For
the system analysis, the special form of the cyclical components was
transformed into an ordinary form of a multivariate AR (MAR) model
under the assumption that the noise sequences are mutually indepen-
dent. This model can be represented in state space form and a Kalman
filter algorithm can be applied to calculate the likelihood of the model.
Parameters Arr, Are, Aee, Q, �r, �e, �tr, and �te were estimated by the
maximum likelihood method for each subject (Ishiguro and Akaike
1989). The order M of the model was selected by Akaike’s Informa-
tion Criterion (AIC) (Akaike 1974).

The impulse responses of the system enable us to describe how the
performance error and rIMCJ interact with each other. The response
of the rIMCJ obtained by providing a unit impulse input to a perfor-
mance error reveals how the CNS utilizes the information of previous
performance levels to modify a subsequent rIMCJ. The impulse
responses of the model were calculated based on estimated model
parameters (Akaike and Nakagawa 1972; Ishiguro et al. 1999).

The reliability of the estimated parameters of the model was con-
firmed by reapplying the system analysis to the simulated data sets,

which were themselves generated based on the estimated model
(Monte Carlo simulation, see APPENDIX 1).

R E S U L T S

High correlation between measured stiffness and IMCJ

We confirmed that the IMCJs were actually linearly corre-
lated with the stiffness measured directly by applying mechan-
ical perturbations (PFM-measured stiffness) during isometric
force regulation tasks. We first confirmed that the joint torque
could be linearly reconstructed from EMG signals in accor-
dance with our previous studies (Gomi and Osu 1998; Osu and
Gomi 1999). Figure 3A compares the measured joint torque
and joint torque reconstructed from EMG signals of subject
H.S. The coefficients of determination for the two subjects
were 0.976 and 0.971. Therefore, first of all, the joint torque
was well predicted from EMG signals. Then, IMCJs were
computed as the summations of absolute torques of individual
muscles (Eq.2). Figure 3B shows the relationship between the
PFM-measured joint stiffness and corresponding IMCJ for
both subjects. The open circles denote shoulder joint stiffness
and the crosses denote elbow joint stiffness. The thin marks
denote data from subject Y.K. and the thick marks denote data

FIG. 2. Statistical model whose structure was designed assuming interac-
tions between viscoelasticity and performance error. See the text for details.

FIG. 3. A: regression results for subject H.S. Horizontal axis denotes the
joint torque predicted from Eq. 1, and the vertical axis denotes the measured
joint torque. Left: shoulder torque; right: elbow torque. B: relationship between
the joint stiffness of the shoulder and elbow measured using perturbations
(horizontal axis) and the corresponding index of muscle co-contraction around
the joint (IMCJ) (vertical axis) for subjects Y.K. and H.S. The open circles
denote the shoulder joint stiffness and the crosses denote the elbow joint
stiffness.
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from subject H.S. A linear relationship was observed between
the IMCJs and PFM-measured joint stiffness. The correlation
coefficients for the two subjects were 0.891 and 0.882. These
results suggested that the IMCJ can closely predict the mag-
nitude of the joint stiffness. The following linear relationship
between the IMCJs and joint stiffness was estimated by using
the least square error method. Because the relationships be-
tween the IMCJs and PFM-measured joint stiffness were sim-
ilar for both the shoulder and elbow of both subjects, the slope
and the intercept were estimated using all of the data

rIMCJ ��Nm/rad�� � 6.27 � IMCJ ��Nm�� � 4.61

IMCJs ([Nm]) during learning movements were converted
into rIMCJs ([Nm/rad]) using the above linear relationship.
Note that the IMCJs were corrected for movements from the
isometric condition for each joint of each subject before the
conversion to rIMCJs, as explained in METHODS.

We also confirmed that the IMCJ is applicable for the
dynamic condition. Figure 4 compares joint stiffness and the
corresponding IMCJ. Each asterisk represents a value from one
of the three subjects under one of the three force-fields. Even
across subjects and tasks, we still observed good linear rela-
tionships between IMCJ and dynamic stiffness (r � 0.85 for
shoulder and 0.78 for elbow). We may suppose that, if the
measurements were limited to the same day and the same
subjects, the reliability of the IMCJ would be even better than
the results obtained here. At least within similar movement
trajectories, the current method works well to quantify the
relative change of joint co-contraction during the dynamic
condition.

Invariant EMG-torque relationships before and after
learning

As each experiment took a few hours, the impedance of the
electrode interface might have changed with the passing of
time. To verify that changes in the electrode interface were not
responsible for observed changes in the surface EMG, we
compared the relationships between the EMG levels and
torques in the isometric contraction tasks prior to learning with
those after learning for each subject. If the EMG levels in
exerting the same joint torques were considerably lower after
learning than before learning, the decreases in the EMG ob-
served during the learning could not be ascribed to the effects
of the learning. Fortunately, the observed EMG-torque rela-
tionships after learning were not detectably different from
those before learning for any subject. The joint torque could be
reconstructed from the EMG in isometric contraction tasks
after learning by using the parameters estimated from the
EMG-torque relationships before learning. The coefficient of
determination for the seven subjects was 0.923 	 0.059 (SD).
The slope of the regression line for the seven subjects was
1.008 	 0.099. The high coefficients of determination and the
slope values close to one suggested that the relationships
between the torques and EMG levels were preserved even after
extensive trials. Therefore the observed decreases in the EMG
levels after learning could not be ascribed to the long-term
changes of the electrode state or muscle fatigue.

Long-term decrease of rIMCJ

Figure 5 shows the changes in the joint torque and rIMCJ
time profiles during learning for subject Y.M. The first and
second rows show the shoulder and elbow torques, respec-
tively. The torques were calculated using the dynamics equa-
tion of a two-joint arm model. The third and fourth rows show
shoulder and elbow moving-averaged rIMCJ respectively. The
moving-averaged rIMCJ was calculated by applying estimated
parameters ci to EMG signals that were rectified and averaged
using a 0.1-s moving-average window. The left column shows

FIG. 4. A and B: relationship between the IMCJ of the shoulder (A) and
elbow (B) (horizontal axis) and the corresponding joint stiffness measured
using perturbations (vertical axis) during movements.

FIG. 5. Changes in the profiles of the joint torque and rIMCJ for subject
Y.M. From top to bottom are the shoulder and elbow torques (�s, �e) and
shoulder and elbow rIMCJs (Ss, Se). From left to right are the initial 4 trials (all
unsuccessful), the initial 4 successful trials, and the final 4 successful trials.
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the profiles of the initial four trials, which were all unsuccess-
ful; the middle column shows the profiles of the initial four
successful trials (early stage of learning); and the right column
shows the profiles of the final four successful trials (late stage
of learning). At the very beginning of the learning, the subjects
failed to meet the task requirements, and as a result, their
torque profiles were variable from trial to trial. However, even
at the early stage of learning, the subjects soon managed to
achieve several successful trials. The torque profiles of these
initial successful trials were nearly identical to the torque
profiles of the final successful trials. The applied strict con-
straint on the trajectory worked well to acquire rIMCJ data
with similar torque profiles. As shown by the profiles, the
rIMCJ in the successful trials decreased although the changes
in the torque profiles were small. The decreases in the rIMCJ
were more evident in the latter half of each movement dura-
tion.

Figure 6, A–C, shows changes in shoulder and elbow rIMCJ
and performance errors accompanying learning, averaged
across the entire movement duration. Each color corresponds
to a subject (Y.O., magenta; K.D., green; N.H., cyan; H.S.,
blue; Y.K., yellow; Y.M., red). The solid curves denote trend
components extracted by applying the second-order trend-
component model expressed in Eqs. 5 and 6. Both the rIMCJ
and performance errors fluctuated in the short term. In four of
five subjects, the mean levels of rIMCJ for both shoulder and
elbow gradually decreased as the learning proceeded. For the
other two subjects (N.H. and Y.K.), the mean levels of rIMCJ
were rather low at the beginning of learning, but at the same
time, the performance errors were comparatively large. For
these subjects, the hand fell short of the target at the beginning
of the learning, resulting in smaller rIMCJs with larger perfor-
mance errors.

Figure 7, A and B, shows relative changes in shoulder and
elbow rIMCJ in successful trials (dotted curves), with the
superimposed trends (solid curves) extracted by applying the
second-order trend component model. Because the magnitude
of rIMCJ was different between subjects, it was normalized for
each subject to 0 mean and 1 SD. Each color corresponds to a
subject. Figure 7C shows performance errors in successful
trials (dotted curves) with the trends (solid curves). As ex-

FIG. 6. A–C: (A) Shoulder and (B) elbow rIMCJs and (C) performance
error across all trials for each subject. Each color corresponds to a subject
(subject Y.O., magenta; subject K.D., green; subject N.H., cyan; subject H.S.,
blue; subject Y.K., yellow; subject Y.M., red).

FIG. 7. A–C: (A) Shoulder and (B) elbow rIMCJs and (C) performance error
across successful trials normalized for each subject (z score: mean 0, SD 1). Each
color corresponds to a subject (subject Y.O., magenta; subject K.D., green; subject
N.H., cyan; subject H.S., blue; subject Y.K., yellow; subject Y.M., red).
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pected, the performance errors were small and nearly constant
and identical for all successful trials. Because of individual
differences in performance, the number of successful trials
were different between subjects. The success rate of each
subject was 70% for Y.O., 81% for K.D., 54% for N.H., 79%
for H.S., 48% for Y.K., and 35% for Y.M. In these successful
trials, every subject showed a negative correlation between the
trial number and rIMCJ except for one subject (Y.K., denoted
in yellow). Even for subject N.H. (denoted in blue), who
showed an increase in rIMCJ at the beginning of the learning,
rIMCJ for successful trials showed a significant decrease in
both shoulder and elbow. The results suggest that the rIMCJ
decreased with little change in the performance error.

Table 1 shows correlation coefficients between the success-
ful trial number and the average torque-independent rIMCJ
(see METHODS for definition). For the shoulder joint, five of six
subjects showed a significant negative correlation between the
trial number and rIMCJ. For the elbow joint, four of six
subjects showed a significant negative correlation between the
trial number and rIMCJ. Therefore, for the majority of the
subjects and joints, the rIMCJ was found to decrease with
learning independent of the joint torque. Consequently, learn-
ing enabled the generation of similar trajectories with less
contribution from the viscoelasticity.

Short-term interaction between rIMCJ and performance
error

As shown in Fig. 6, both the rIMCJ and performance error
went up and down frequently throughout the learning process.
Looking at the figure, these fluctuations appear to be simple
white noise, but they might have some temporal interactions.
They might reflect some dynamic system underlying the learn-
ing process. To examine the temporal relationship between the
rIMCJ and performance error, the cross-correlation was com-
puted according to the following deterministic cross-correla-
tion sequence. The values were normalized so that, for an
autocorrelation, the sample at zero lag would be 1.0

Cer�m� � �
n�1

N��m�

e�n�r�n � m� (9)

Here, N denotes the total number of the trials, and m denotes
the lag in the trial number between the rIMCJ and performance
error. e(n) and r(n 
 m) denote the cyclical components of the
performance error and rIMCJ normalized for each subject. The
long-term trend components described by Eqs.5 and 6 were
presubtracted from the performance error and rIMCJ. Figure 8
shows cross-correlations between performance error and

rIMCJ in the latter half of each movement duration, averaged
across all subjects, and their 95% confidence intervals. Signif-
icant positive-correlation values were observed at the lags of
one and two trials for the shoulder, and at the lag of two trials
for the elbow. A positive correlation value for a positive time
lag means a positive correlation between the performance error
and subsequent rIMCJ, that is, a higher rIMCJ follows a poor
performance, and a lower rIMCJ follows a good performance.
For the elbow, we also found a significant negative correlation
at zero lag, suggesting an instantaneous response of the per-
formance error to the rIMCJ. The negative correlation values
for zero lag indicated that the performance was good when the
rIMCJ was high, while the performance was bad when the
rIMCJ was low. The observed positive correlation values at
lags of a few trials suggested the existence of short-term
interactions between the viscoelasticity and performance error.
These observations were found in the latter half of the move-
ment duration but were not significant in the first half of the
movement duration.

To further examine the properties of the interactions, we
analyzed the time series data for each subject using the BMF
statistical model described in Eqs. 3–8 and in Fig. 2. The
interactions between rIMCJ and performance error were ex-
amined for each subject by computing the impulse response of

FIG. 9. Estimated response of rIMCJ when a performance error impulse was
fed into the system for each subject. Solid curves denote estimates obtained from
real data. Broken curves denote estimates obtained from simulated data generated
by the Monte Carlo method (Marsaglia and Bray 1964). Both the real data and
simulated data showed similar positive impulse responses for 5 of 6 subjects
(subjects Y.O., K.D., N.H., H.S., and Y.K.), suggesting that the estimated perfor-
mance error–rIMCJ interactions were reliable.

TABLE 1. Correlation coefficients between the successful trial
number and rIMCJ for each subject

Subject Shoulder Elbow

Y.O. �0.709** �0.644**
K.D. �0.660** �0.486**
N.H. �0.415** �0.378**
H.S. �0.442** 0.071 n.s.
Y.K. 0.175 n.s. 0.075 n.s.
Y.M. �0.418** �0.520**

** P � 0.01.
n.s., not significant: rIMCJ, index of muscle co-contraction around the joint.

FIG. 8. Average cross-correlations between performance error and rIMCJ and
their 95% confidence intervals, in the latter half of each movement duration,
averaged across 6 subjects. Trend components were presubtracted from normal-
ized values. A positive correlation value for a positive time lag means a positive
correlation between the performance error and subsequent rIMCJ.
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the system. To confirm the reproducibility of the model, we
executed simulations by the Monte Carlo method (see APPENDIX

1). We processed only the rIMCJ values for the latter half of
each movement duration, where significant cross-correlations
were found.

Figure 9 shows the estimated response of the shoulder
rIMCJ when a performance error impulse was input into the
system. For five of six subjects, similar impulse responses were
obtained from both real data and simulated data generated by
the Monte Carlo method, suggesting that the observed transfer
characteristics between the components were significant. That
is, for these subjects, the shoulder rIMCJ showed a significant
positive response to performance error input, which indicates
that rIMCJ was positively correlated with the performance
error levels in the immediately preceding trials. The results
suggested that large performance errors will lead to a greater
shoulder viscoelasticity, whereas small performance errors will
lead to a lower viscoelasticity in subsequent trials. Interactions
like these were not so obvious for the elbow rIMCJ and when
the shoulder rIMCJ was restricted to the first half of each
movement duration. Therefore previous performance mainly
affected the viscoelasticity during the braking phase, and the
shoulder viscoelasticity was more sensitive to this preceding
performance than the elbow viscoelasticity.

The reproducibility of the estimated models and the reliability
of the estimated values were examined from several aspects.
Table 2 shows maximum likelihood and AIC values for each AR
order in the cyclical components for subject Y.O. The top table
shows the values when real data were used, while the bottom table
shows the values when simulated data generated by the Monte
Carlo method were used (see APPENDIX 1). In the case of this
subject, an order of four (where the AIC value was minimal) was
selected in the real data. The AIC value was again minimal at the
order of four in the simulated data. The same AR order selected
for both real data and simulated data demonstrates the reproduc-
ibility of an estimated model. All of the subjects here showed the
same AR order for both the real data and simulated data. The AR
order selected for subjects K.D., H.S., Y.K., and Y.M. was one,

and for subject N.H., it was two. The reliability of the statistical
model is described in APPENDIX 1.

D I S C U S S I O N

IMCJ

We proposed a novel method for evaluating muscle co-
contraction levels around the joint using surface EMG signals,
and we confirmed that the values correspond well to the joint
stiffness values in isometric contraction tasks as well as in
dynamic tasks. The advantage of this method over the direct
comparison of raw EMG signals, or EMG signals normalized
by maximum voluntary contraction (MVC), is that the values
have a physically meaningful unit. Because the magnitudes of
raw EMG signals will change drastically for a number of
reasons, such as the state of the electrodes, the distance be-
tween the electrodes, the configuration of muscles, skin con-
dition, etc., they do not directly relate to a physical quantity,
such as a force or stiffness. Even with MVC normalization, the
contribution of each muscle is hard to assess. Therefore adding
the raw EMG or normalized EMG of different muscles to-
gether has no physical meaning, because the weights among
the multiple muscles are quite arbitrary. In contrast, in the
present method, EMG signals are converted with reference to
the generated joint torque so that they represent an absolute
quantity. Because these converted values successfully repre-
sent a physically meaningful unit, they enable arithmetic op-
erations such as addition and subtraction among operations of
multiple muscles. This gives a measure for the net joint stiff-
ness composed of multiple muscles as well as the relative
contribution of each muscle to the joint stiffness. The present
method can be used in a practical manner because the only
requirement for computing the IMCJ is to measure the joint
torque and surface EMG signals. Measuring the relationship
between the joint torque and EMG is rather easy compared
with that between the stiffness and EMG in terms of both
mechanical and procedural demands (Osu and Gomi 1999).

Although the EMG-stiffness relationship during movements
is quantitatively different from that during isometric contrac-
tion because of nonlinear components (such as length-tension
or velocity-tension curves) or changes in moment arms accord-
ing to the posture, the IMCJ successfully reproduced the rela-
tive change of joint co-contraction during movements (Fig. 4).
The linear assumptions for force/velocity curves might have
resulted in overestimating the agonist muscle torques com-
pared with antagonist muscle torques. However, small errors in
weighting antagonistic muscle pairs would not have severely
affected the obtained results because none of the individual
muscles showed a tendency distinctively opposite to the ob-
served trend during learning. The assumption of constant mo-
ment arms is also over-simplified, especially for shoulder mus-
cles. Pectoralis major moment arm might have changed 20%
and posterior deltoid moment arm might have changed 30% for
the movements examined here (Kuechle et al. 1997). Biceps
and triceps moment arms seemed to be rather constant, while
the brachioradialis moment arm might have changed 20–30%
for the movements examined here (Murray et al. 1995). Such
changes might have caused some error but would not have
severely affected the results as long as we were observing
almost identical trajectories within each subject, on the same
day, and just looking at relative changes.

TABLE 2. Maximum likelihood and AIC values for each AR order
in cyclical components of measured and simulated data for subject
Y.O.

Measured Data

AR Order Maximum Likelihood AIC

1 �173.185 362.369
2 �171.047 364.094
3 �167.591 363.182
4 �163.263 360.527
5 �162.038 364.075

Simulated Data

AR Order Maximum Likelihood AIC

1 �169.350 354.700
2 �165.547 353.094
3 �150.505 329.009
4 �143.564 321.127
5 �143.249 326.499

AIC, Akaike’s Information Criterion; AR, auto-regressive.
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Even if the linearity assumption was wildly violated in
reality, the proposed rather simple model and methods are still
useful for the purpose of comparison and give us a better index
for net joint stiffness than conventional normalization and
summed EMG from multiple muscles. Previous estimation of
dynamic torque and stiffness from EMG using a neural net-
work model (Koike and Kawato 1995), and our recent estima-
tion of dynamic stiffness from EMG signals with simultaneous
measurements of stiffness by PFM, support the validity of
using EMG signals for the stiffness estimation (Franklin et al.
2000). In summary, if torque levels are well corrected for
movements, the present method is quite effective in assessing
relative changes in the joint viscoelasticity during movements
within a single subject.

Integration of internal model control and viscoelasticity

We observed a long-term decrease in rIMCJ in the learning
of planar arm movements. The learning enabled the subjects to
generate the same trajectory with less rIMCJ. The present work
succeeded in observing pure changes in the viscoelastic force
by requiring strict trajectory control and examining only suc-
cessful trials. Such observations would be difficult in force-
field learning (Milner and Cloutier 1993; Shadmehr and
Mussa-Ivaldi 1994; Thoroughman and Shadmehr 1999), be-
cause force-fields severely perturb hand trajectories. Thor-
oughman and Shadmehr (1999) observed decreases in wasted
contraction, that is, the amount of activation canceled by op-
posing muscles, in the learning of a novel force-field. How-
ever, wasted contraction does not necessarily reflect the vis-
coelasticity of the system. Even with a decrease in the wasted
contraction, the increased effective contraction that compen-
sates for the applied force-field can provide the necessary
viscoelasticity to stabilize the movement. Accordingly, their
findings do not directly demonstrate the change of weight on
the viscoelastic force. By giving strict constraints on trajecto-
ries and comparing stiffness values among movements with
similar trajectories, we were able to demonstrate the decrease
of viscoelastic force for the first time.

Given that there is no change in the movement trajectory nor
in the joint torque, the only possible explanation for the de-
crease in the viscoelastic forces (peripheral feedback control
gain) is an increase in the contribution of the feedforward
component (internal model control). When learning a new task,
unpredictable dynamic forces acting on the multijoint links
(e.g., interaction force, Coriolis force, or centrifugal force)
might perturb the movements. As implicated by the equilib-
rium-point control hypothesis, viscoelastic force produced by
both intrinsic muscle properties and spinal reflex will counter-
act such unpredictable perturbation (Flash 1987). As the learn-
ing proceeds, the CNS acquires the internal models that predict
and generate necessary motor commands to compensate for the
perturbation (Imamizu et al. 2000). The CNS weighs the vis-
coelastic force more strongly at the beginning of learning when
the internal models are poor, and it gradually increases the
internal model contribution as the learning proceeds. The
short-term interaction between the performance error and
rIMCJ suggests that the CNS actively regulates the viscoelas-
ticity.

We propose an integration of the two theories, that is, the
equilibrium-point control hypothesis and internal model–con-

trol hypothesis, on the assumption that learning improves the
internal models (Fig. 10A). The final motor command is the
summation of the parallel outputs from the “feedforward con-
troller using the internal models” and “feedback controller
supported by the viscoelasticity”; furthermore, the contribution
of each output to the command is regulated by changing the
peripheral feedback gain, that is, the magnitude of the vis-
coelastic force. The CNS monitors the improvement of the
internal models and the performance. The CNS relies on the
viscoelasticity when the internal models are imperfect or the
environment is unstable, while it utilizes the internal models
after they improve and the environment is stable (Fig. 10B). In
addition to such long-term interactions, our findings further
suggest short-term viscoelasticity-performance interactions on
a trial-by-trial basis. If a movement is currently inaccurate, the
contribution of the viscoelasticity is increased within several
trials to improve the performance. If a movement is currently
accurate, on the other hand, the contribution of the internal
models is increased within several trials. Accordingly, the CNS
can learn the internal models without loss of movement accu-
racy by using viscoelasticity-dependent control at the onset of
learning and employing off-line feedback of the performance
to regulate the viscoelasticity.

Such a strategy can be related to the common engineering
technique of solving a problem by slowly shifting task param-
eters from domains where the solution is easy to domains
where the solution is difficult (continuation method). In robot

FIG. 10. A: integration of internal model control and viscoelasticity-depen-
dent control. Thick green arrow shows that a high viscoelastic force instanta-
neously reduces the performance error. Thick red arrow shows that the per-
formance error results in transient increases in viscoelastic forces in
subsequent movements. Thick blue arrow shows that an improvement of the
internal models results in gradual decreases in both viscoelastic forces and
performance error. Summation of the output from these 2 control systems is the
final motor command sent to the limbs. B: changes rIMCJ (green), perfor-
mance error (red), and accuracy of the internal models (blue) associated with
learning predicted by the integrated model. As the internal models improve, the
output from the internal models increases.
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learning, for example, higher learning rates were obtained by
gradually increasing the speed or decreasing the stiffness as the
learning progressed (Katayama et al. 1998; Sanger 1994).
Behavioral studies have suggested that the internal models in
the brain are relatively local in their generalization. They are
accurate around previously learned trajectories but inaccurate
for unexplored trajectories; the internal models are not para-
metric with a global generalization capacity (Gandolfo et al.
1996; Ghahramani et al. 1996; Imamizu et al. 1995; Kitazawa
et al. 1997; Thoroughman and Shadmehr 2000). An internal
model that achieves a novel desired trajectory cannot be ac-
quired from those trajectories that differ greatly from the
desired one. By sufficiently increasing the viscoelastic forces,
however, trajectories around the desired one can be repetitively
practiced, even at the onset of learning. An increased viscoelas-
tic force at the onset of learning is also effective in learning
schemes that utilize motor command errors read from the
feedback controller as learning signals for internal models
(Kawato et al. 1987, 1993).

Active and predictive control of viscoelastic force

Whether the CNS actually regulates the joint viscoelasticity
or whether this parameter is simply an incidental by-product of
the overlapping activity of agonist and antagonist muscles has
remained an unsettled problem (Gomi 1996; Smith 1996; Thor-
oughman and Shadmehr 1999; Van Galen et al. 1996). The
present results showed that performance error can explain
future rIMCJ, especially in the shoulder, during deceleration;
this supports the idea that the CNS actively and predictively
controls the viscoelasticity. Viscoelasticity regulation by the
off-line feedback of the performance may assist in learning
movements. Such short-term interactions are not yet imple-
mented in other biological models recently proposed, in which
the feedforward compensation of the external force is parallel
with the co-contraction mechanism to stabilize the movement
(Flash and Gurevich 1997; Gribble and Ostry 2000; Katayama
et al. 1998; Wang et al. 2001).

Van Galen and his colleagues (Van Galen and DeJong 1995;
Van Galen and Schomaker 1992; Van Galen et al. 1990)
hypothesized that stiffness control is an effective means of
accuracy control. They stated that a high feedback gain will
reduce the endpoint error. The CNS may increase the vis-
coelastic forces to execute more accurate movements. This is
in good agreement with the present results, i.e., after unsuc-
cessful trials, the rIMCJ increased to result in successful trials.
Increases were more frequent in the latter half of each reaching
movement duration, and this suggests the intention of the
subjects to increase the endpoint accuracy.

The hypothesis that an increase in stiffness improves the
endpoint accuracy, however, may appear to contradict the
observed long-term decrease in rIMCJ. Although the rIMCJ
was lower at the end of learning than at the beginning of
learning, the accuracy of the movements increased signifi-
cantly after extensive learning. This hypothesis of stiffness
control may also be at odds with Harris and Wolpert (1998),
because stiffness increases require larger motor commands,
which in turn introduce higher levels of noise that causes larger
trajectory errors. One explanation is that the CNS adopts dual
strategies to improve the accuracy and chooses which strategy
to use depending on the accuracy of the internal models. When

the internal models are immature, the CNS tries to increase the
viscoelastic force and utilizes muscles and neural feedback to
compensate for unexpected interaction forces. Once an internal
model is acquired, the CNS tries to decrease the motor com-
mand amplitude by decreasing the viscoelastic force, reducing
the noise and increasing the accuracy. An increase in viscoelas-
tic force is effective for a temporary increase in accuracy
against perturbations; any muscle activation should be de-
creased to maintain a good performance over the long run.

We can think of several advantages in controlling an arm
with low viscoelasticity: low muscle activation increases effi-
ciency and prevents muscle fatigue, and a compliant limb
reduces the potential for injury when it contacts an object in the
environment. However, viscoelasticity is indispensable for sta-
ble control. Without viscoelasticity, spatiotemporal distur-
bances in the environment, such as objects to be manipulated,
force-fields, or even changes in trajectories, can perturb limbs,
resulting in instability. It therefore makes sense computation-
ally to increase the limb compliance when moving in a stable
environment, while adaptively increasing the viscoelastic force
in response to instability in the environment (Lacquaniti et al.
1993). This study suggests that the CNS is equipped with an
ingenious mechanism of learning and controlling movements,
which regulates viscoelasticity on a short- and long-term basis,
depending on performance error, and finally acquires smooth
and accurate movements while maintaining stability during the
entire learning process.

A P P E N D I X 1

Advantages of the BMF model

The BMF model has the following advantages.
1) Multivariate mean-nonstationary time-series data can be decom-

posed into its nonstationary trend components and other mutually
related stationary cyclical components described by an AR model
through one single procedure.

2) The AIC can be used to evaluate the accuracy of the decompo-
sition.

3) The structure of the mutual relationships among the stationary
cyclical components (e.g., impulse responses) can be derived from
estimated AR coefficient matrices by applying system analysis tech-
niques (Akaike and Nakagawa 1972; Kato and Kawahara 1998).

4) The reliability of the estimated parameters of the model can be
confirmed by reapplying the system analysis to the simulated data
sets, which are themselves generated based on the estimated model
(Monte Carlo simulation).

Evaluation of the model

To examine the reproducibility of the estimated model, we gener-
ated data by using Gaussian noise as the system-noise input in the
model estimated from the measured data (the Monte Carlo method),
and re-estimated the model parameters by fitting the AR model to the
simulated data. Examining empirical data generated through Monte
Carlo simulation is an effective way of investigating the properties
and reproducibility of such a model, especially when samples are
limited and it is impossible to get another data set to test the model
(Lutkepohl 1993). Actually, simulated data can be produced by ap-
plying artificially generated Gaussian white noise as input to the noise
components of the model estimated from the measured data. If the
assumptions about the whiteness and Gaussian distribution of the
noise are satisfied, the simulated data should reflect the stochastic
characteristics of the measured data. If the assumptions are not ade-
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quate, the white Gaussian noise input will not be able to simulate the
measured data. Therefore by reapplying the same system-analysis
procedure to the simulated data, we checked whether the simulated
data had physiological properties identical to the measured data.
Similar estimation results obtained from both the measured and sim-
ulated data sets verified the adequacy of the estimators, and at the
same time, the assumption of the white Gaussian noise. In our sim-
ulation, Gaussian random numbers were computed using the Marsa-
glia method (Marsaglia and Bray 1964) and input to each noise
component of the model. The parameters were again estimated by
fitting the BMF model to the simulated data. Impulse responses were
computed from the parameters obtained by the simulation data and
compared with the impulse responses obtained from the real data.
Similar impulse responses and the same AR order obtained from both
real data and the simulated data set confirm the validity of the model
and the estimators (Fig. 9 and Table 2).

Figure A1, A and B, shows the prediction capability of the model
for the (A) rIMCJ and (B) performance error for subject Y.O. The
solid curves denote normalized data and the dashed curves denote
one-step predictions computed from the proposed statistical model.
The one-step predictions demonstrate the predictive part of the model
described as an auto-regressive form by Eqs. 7 and 8. Differences
between one-step predictions and the data (prediction error) demon-
strate the stochastic nature of the system, mainly described by the
system noise �r(n) and �e(n) in Eqs. 7 and 8. A similarity of a one-step
prediction with the data demonstrates the predictability of the model
(goodness of fit), although they did not perfectly fit one another
because of the stochastic nature of the system.

As mentioned above, in deriving the properties of the estimators,
white Gausssian noise was assumed as the system noise input to the
model. If the assumed model were appropriate, the interactions would
be fully extracted by the model and only the stochastic components
would remain as the prediction error. In this case, if the BMF model
structure and estimated model parameters are appropriate, the predic-
tion error should be white and Gaussian as assumed. On the other
hand, if the assumed model were poor or inappropriate to describe the
underlying system, the interactions that could not be modeled would

appear in the prediction error. We confirmed the validity of the
assumption by an autocorrelation function and the distribution of
prediction errors. Figure A1, C and D, shows distributions of predic-
tion error for the same subject. The observed normally distributed
prediction error demonstrated that the Gaussian noise assumption was
satisfied by the data. All of the other subjects showed similar Gaussian
distributions of prediction error. Figure A1, E and F, shows autocor-
relations of the prediction error for all subjects. The dash-dot lines
denote 95% confidence intervals. The lack of correlations at lags �0
demonstrates that the assumption of the whiteness of the noise was
also satisfied. The white and Gaussian prediction errors observed for
all subjects confirmed the validity of the assumed model and the
reliability of the estimated parameters and impulse responses.

A P P E N D I X 2

The details of dynamic stiffness estimation and IMCJ
computation

For estimation of dynamic stiffness and corresponding dynamic IMCJ,
the subject performed a series of reaching movements while coupled to
the PFM. The right forearm of the subject was firmly attached to the PFM
using a molded plastic cuff. The cuff immobilized the wrist joint, per-
mitting movement only at the shoulder and elbow. The right forearm was
supported on a beam fixed to the handle of the PFM. The subject
performed a reaching movement from a start target (located 31 cm in
front of the shoulder) to an end target (located 56 cm in front of the
shoulder). The subject was required to produce movements of 600 	 100
ms duration. The force-fields applied were null force-field, velocity-

dependent force-field �� Fx

Fy
� � 	� 13 �18

18 13 �� ẋ
ẏ ��, and position-

dependent force-field �� Fx

Fy
� � � 
x

0 ��. Here 	 and 
 were chosen

depending on the subject’s force (2⁄3 � 	 � 1; 300 � 
 � 500). The
endpoint stiffness of the arm was determined by applying displacement in
each of eight directions during the mid-portion of a movement. The

FIG. A1. A and B: predictability of (A) rIMCJ and
(B) performance error for 1 typical subject (subject
Y.O.) using the model. Plots show normalized data
(solid curves) and 1-step predictions (dashed curves)
calculated from the proposed statistical model. C and D:
distribution of prediction errors for (C) rIMCJ and (D)
performance error with fitted Gaussian curves for sub-
ject Y.O. E and F: autocorrelation function of prediction
error for (E) rIMCJ and (F) performance error with the
95% confidence interval (dash-dot lines) for 6 subjects.
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displacement onset occurred 150 ms after the movement onset. Eighty
trials without displacement were randomly intermingled with the dis-
placement trials for a total of 160 trials. The details of the stiffness
estimation and the experimental setup are presented elsewhere (Burdet et
al. 2000, 2001). The endpoint stiffness was converted to joint stiffness. At
the same time, EMG signals were recorded from six arm muscles. The
EMG signals of 80 trials without displacement were rectified and aver-
aged for each muscle for a period of 300 ms during the mid-portion of a
movement, including the portion where the perturbations were applied in
the displacement trials. The means over 80 no-displacement trials were
used to compute shoulder and elbow IMCJs.
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