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When optimal feedback control is not enough: feedforward

strategies are required for optimal control with active sensing

Sang-Hoon Yeo, David W. Franklin and Daniel M. Wolpert

1 Optimal Controller

We start from the control-observation model with signal-dependent and state-dependent noise (see

Main text for details of this formulation):

Dynamics xt+1 = Axt +B(I + Ft)ut + ξt

Observer yt = Hxt + gt(a+ κd>xt) + ωt

Cost per step x>t Qxt + u>t Rut

Final cost x>nQnxn.

The state of the system x is estimated as x̂ by a Kalman filter.

x̂t+1 = Ax̂t +But +Kt(yt −Hx̂t) + ηt,

where the initial mean and covariance of the estimated state, x̂1 and Σ1 are given. Now, we assume

that the cost-to-go function vt(xt, x̂t) can be represented by the following “affine-quadratic” form:

vt(xt, x̂t) = x>t S
x
t xt + e>t S

e
t et + sxt

>xt + st, (1)

where e = x − x̂ and the final conditions are given as Sxn = Qn, S
e
n = 0, sxn = sn = 0. Here we

use the term “affine-quadratic” to distinguish it from the conventional quadratic form that has no

linear term sxt
>xt.

Now, assume that the system is optimally controlled for t = [t + 1, · · · , n] and an optimal feed-

back policy ut = ut(x̂t) is given. Then the corresponding cost-to-go function vt(xt, x̂t) should

satisfy the following Bellman equation:

vt(xt, x̂t) = x>t Qxt + u>t Rut + E[vt+1(xt+1, x̂t+1)|xt, x̂t, ut]. (2)

To represent the last expectation term with variables at time t, we use the following dynamics
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of x, x̂ and e:

xt+1 = Axt +B(I + Ft)ut + ξt

et+1 = xt+1 − x̂t+1

= (A−KtH)et −Ktgt(a+ κd>xt) +BFtut + ξt − ηt −Ktωt,

and their conditional means and covariances:

E[xt+1|xt, x̂t, ut] = Axt +But (3)

E[et+1|xt, x̂t, ut] = (A−KtH)et (4)

Cov[xt+1|xt, x̂t, ut] = E[BFtutu
>
t F
>
t B

>|ut] + Ωξ

Cov[et+1|xt, x̂t, ut] = E[BFtutu
>
t F
>
t B

>|ut] + Ωξ + Ωη +KtΩ
ωK>t

+Kt E[gt(a+ κd>xt)(a+ κd>xt)
>g>t |xt] K>t .

Given that BFt consists of mutually independent random variables [ε1
t , · · · , εct ] each of which follows

a unit normal distribution (i.e. εit ∼ N (0, 1)), BFtut can be decomposed into BFtut = ε1
tC1ut+· · ·+

εctCcut, where Ci’s are matrix bases. Similarly, assuming that Gt consists of d normally distributed

random varilables [ε1t , · · · , εdt ], the same decomposition can be applied to gt(a+κd>xt), which results

gt(a+κd>xt) = ε1t (a1 +D1xt) + · · ·+ εdt (ad+Ddxt). Note that κ is now included in D. Using these,

the covariances become

Cov[xt+1|xt, x̂t, ut] =
c∑
i=1

Ciutu
>
t C
>
i + Ωξ (5)

Cov[et+1|xt, x̂t, ut] =

c∑
i=1

Ciutu
>
t C
>
i +

d∑
i=1

Kt(ai +Dixt)(ai +Dixt)
>K>t (6)

+Ωξ + Ωη +KtΩ
ωK>t .

Since the expected cost-to-go at time t+ 1 is:

E[vt+1|xt, x̂t, ut] = E[x>t+1S
x
t+1xt+1 + e>t+1S

e
t+1et+1 + sxt+1

>xt+1 + st+1],
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where each element can be represented by variables at time t using Equation (3, 4, 5, 6)

E[x>t+1S
x
t+1xt+1|xt, x̂t, ut] = x>t A

>Sxt+1Axt + u>t B
>Sxt+1But

+2x>t A
>Sxt+1But +

c∑
i=1

u>t C
>
i S

x
t+1Ciut + tr(Sxt+1Ωξ)

E[e>t+1S
e
t+1et+1|xt, x̂t, ut] = e>t (A−KtH)>Set+1(A−KtH)et

+

c∑
i=1

u>t C
>
i S

e
t+1Ciut

+

d∑
i=1

(ai +Dixt)
>K>t S

e
t+1Kt(ai +Dixt)

E[sxt+1
>xt+1|xt, x̂t, ut] = sxt+1

>(Axt +But)

E[st+1|xt, x̂t, ut] = st+1.

Putting these together, the cost-to-go function at time t can be written as

vt = x>t Wxxt + u>t Wuut + e>t Weet + 2x>t Wxuut + wx
>xt + wu

>ut + w0, (7)

where

Wx = A>Sxt+1A+
d∑
i=1

D>i K
>
t S

e
t+1KtDi +Q

Wu = B>Sxt+1B +
c∑
i=1

C>i (Sxt+1 + Set+1)Ci +R

We = (A−KtH)>Set+1(A−KtH)

Wxu = A>Sxt+1B

wx
> = 2

d∑
i=1

a>i K
>
t S

e
t+1KtDi + sxt+1

>A

wu
> = sxt+1

>B

w0 =

d∑
i=1

a>i K
>
t S

e
t+1Ktai + st+1

+tr
(
Sxt+1Ωξ + Set+1

(
Ωξ + Ωη +KtΩ

ωK>t

))
.

Then, the optimal policy is ut = −W−1
u

(
W>xuxt + 1

2wu
)

= −Ltxt − lt. Since the policy should

depend on the observed state x̂, not x, we take a conditional mean of the policy using E[xt|x̂t] = x̂t,

which results ut = −Ltx̂t − lt = −Lt(xt − et)− lt. Applying this to the equation (7), we finally get

vt = x>t (Wx −WxuLt)xt + e>t (We +WxuLt)et + (w>x − w>u Lt)xt −
1

2
w>u lt + w0. (8)
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Together with vn = x>nQnxn and vt, this is also in an affine-quadratic form and therefore completes

the proof by induction that the cost-to-go function is always affine-quadratic. The corresponding

update rule is

Lt =

(
B>Sxt+1B +

c∑
i=1

C>i (Sxt+1 + Set+1)Ci +R

)−1

B>Sxt+1A (9)

lt =
1

2

(
B>Sxt+1B +

c∑
i=1

C>i (Sxt+1 + Set+1)Ci +R

)−1

B>sxt+1 (10)

Sxt = A>Sxt+1A+
d∑
i=1

D>i K
>
t S

e
t+1KtDi +Q−A>Sxt+1BLt (11)

Set = (A−KtH)>Set+1(A−KtH) +A>Sxt+1BLt (12)

sxt =

(
d∑
i=1

2a>i K
>
t S

e
t+1KtDi + sxt+1

>A− sxt+1
>BLt

)>
(13)

st = st+1 +
d∑
i=1

a>i K
>
t S

e
t+1Ktai −

1

2
sxt+1

>Blt

+tr
(
Sxt+1Ωξ + Set+1

(
Ωξ + Ωη +KtΩ

ωK>t

))
, (14)

where the final conditions are Sxn = Q,Sen = 0, sxn = 0, sn = 0. Assuming x̂1 and E[e1e
>
1 ] = Σ1 are

known and E[e1] = 0, the total expected cost is

E[v1] = E[x>1 S
x
1x1 + e>1 S

e
1e1 + sx1

>x1 + s1]

= E[(x̂1 + e1)>Sx1 (x̂1 + e1) + e>1 S
e
1e1 + sx1

>(x̂1 + et) + s1] (15)

= x̂>1 S
x
1 x̂1 + tr((Sx1 + Se1)Σ1) + sx1

>x̂1 + s1.

2 Optimal Estimator

Now we determine the Kalman filter Kt that minimizes the expected cost-to-go function at each

time step. As the cost-to-go-function is also affine-quadratic with respect to Kt, ∂E[vt]/∂Kt = 0 is

a necessary and sufficient condition for the minimum. K-dependent terms in vt are

q(Kt) =

d∑
i=1

x>t D
>
i K

>
t S

e
t+1KtDixt + e>t (A−KtH)>Set+1(A−KtH)et

+
d∑
i=1

2a>i K
>
t S

e
t+1KtDixt +

d∑
i=1

a>i K
>
t S

e
t+1Ktai + tr

(
Set+1KtΩ

ωK>t

)
.
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Using the following matrix lemmas:

x>y = tr(xy>)

∂tr(KUK>V )

∂K
= V KU + V >KU>

∂x>Ky

∂K
= xy>,

Kt that minimizes E[q(Kt)] is

Kt = AΣe
tH
>

(
d∑
i=1

(
DiΣ

x
tD
>
i + aix̄

>
t D
>
i +Dix̄ta

>
i + aia

>
i

)
+HΣe

tH
> + Ωω

)−1

, (16)

where Σ’s are uncentered and unconditional covariances (i.e. Σx
t = E[xtx

>
t ] and Σe

t = E[ete
>
t ]) and

x̄t is the unconditional mean of xt. Note that x̄t represents the nominal trajectory, a trajectory

that would be produced by controller if there are no noises.

Given that the dynamics of e, x, x̂ are

et+1 = (A−KtH)et −
d∑
i=1

εitKt(ai +Dixt)−
c∑
i=1

εitCt(Ltx̂t + lt) + ξt − ηt −Ktωt

xt+1 = Axt −

(
B +

c∑
i=1

εitCt

)
(Ltx̂t + lt) + ξt

x̂t+1 = xt+1 − et+1

= (A−BLt)x̂t −Blt +Kt

(
Het +

d∑
i=1

εit(ai +Dixt)

)
+ ηt +Ktωt,

update rules for the unconditional means of e, x, x̄ are

ēt+1 = (A−KtH)ēt (17)

x̄t+1 = (A−BLt)x̄t +BLtēt −Blt (18)

¯̂xt+1 = x̄t+1 − ēt+1, (19)
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with initial conditions ē1 = 0, x̄1 = ¯̂x1 = x̂1. Update rules for covariance Σe
t and Σx

t are

Σe
t+1 = (A−KtH)Σe

t (A−KtH)>

+
c∑
i=1

Ci(LtΣ
x̂
tL
>
t + Lt ¯̂xtl

>
t + lt ¯̂x

>
t L
>
t + ltl

>
t )C>i (20)

+Σn
t + Ωξ + Ωη +KtΩ

ωK>t

Σx̂
t+1 = (A−BLt)Σx̂

t (A−BLt)> +KtHΣe
tH
>K>t

+(A−BLt)Σx̂e
t H

>K>t +KtHΣex̂
t (A−BLt)>

−(A−BLt)¯̂xtl
>
t B
> −Blt ¯̂x

>
t (A−BLt)>

−Bltē>t H>K>t −KtHētl
>
t B
> (21)

+Σn
t +Bltl

>
t B
> + Ωη +KtΩ

ωK>t

Σx̂e
t+1 = (A−BLt)Σx̂e

t (A−KtH)> −Bltē>t (A−KtH)>

+KtHΣe
t (A−KtH)> − Σn

t − Ωη −KtΩ
ωK>t (22)

Σx
t = Σe

t + Σx̂
t + Σx̂e

t + Σex̂
t , (23)

where

Σn
t =

d∑
i=1

Kt(aia
>
i + aix̄

>
t D
>
i +Dix̄ta

>
i +DiΣ

x
tD
>
i )K>t .

Initial conditions are Σe
1 = Σ1,Σ

x̂
1 = x̂x̂>,Σx̂e

1 = 0.

3 Switching between affine and constant form

One problem of the suggested affine state-dependency is that the noise will increase when ai +Dixt

becomes negative. To prevent this, for each iteration, we simply set the affine term to be zero

(ai = 0 and Di = 0) when ai + Dix̄t becomes negative. We will show later (Figure S1) that the

algorithm still stably converges to the solution.

4 Iterative Solver

As originally suggested by Todorov [1], the optimal solutions for both controller (Lt and lt) and

estimators (Kt) can be obtained by iterative updates that guarantee the convergence. Again, this

guarantee does not hold any more in our case due to the switching behavior, but we will empirically

show that the algorithm converges. The overall procedure is sketched in Algorithm S1.
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Algorithm S1 Calculate Lt, lt, Kt for t = [1, · · · , n− 1]

1: procedure Iterative solver

2: Lt = 0, lt = 0 ∀ t = [1, · · · , n− 1] . Controller initialization

3: Kt = 0 ∀ t = [1, · · · , n− 1] . Estimator initialization

4: E[v1]← Inf

5: do

6: (Lt, lt) ← Estimator update (Kt)

7: Kt ← Controller update (Lt, lt)

8: Update E[v1] . Equation(15)

9: Switch state-dependent noise when necessary . Section(3)

10: while (E[v1] reduced)

11: end procedure

1: procedure Controller update(Kt)

2: for t = (n− 1) : −1 : 1 do

3: Update Lt lt . Equation(9, 10)

4: Update Sxt Set sxt st . Equation(11, 12, 13, 14)

5: end for

6: end procedure

1: procedure Estimator update(Lt, lt)

2: for t = 1 : 1 : (n− 1) do

3: Update Kt . Equation(16)

4: Update ēt+1 x̄t+1
¯̂xt+1 . Equation(17, 18, 19)

5: Update Σe
t+1 Σx̂

t+1 Σx̂e
t+1 Σx

t+1 . Equation(20, 21, 22, 23)

6: end for

7: end procedure

5 A system with de-coupled dynamics

To understand the characteristics of the suggested affine controller, we consider a typical case when

the deterministic dynamics (xt+1 = Axt + But) of the system and the cost matrices (Q and R)

are decoupled into k mutually independent sub-systems, i.e. when A,B,Q and R are all block-

diagonal matrices with k-blocks of the same structure and therefore the whole system is represented

as follows: x1t+1

...
xkt+1

 =

(
A1

. . .
Ak

) x1t
...
xkt

+

(
B1

. . .
Bk

) u1t
...
ukt

 , Q =

(
Q1

. . .
Qk

)
, R =

(
R1

. . .
Rk

)
.

Let Sk be a group of all k-block-diagonal matrices (i.e. A,B,Q,R ∈ Sk). Note that this group

is closed under multiplication (i.e. if X ∈ Sk and Y ∈ Sk, then XY ∈ Sk). As will be shown in the
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next section, our two-dimensional reaching experiment can be considered to be this case (k = 2).

Now, let U{j1,j2,··· } be a set of column vectors (in either state, control or observation space) that

can only have non-zero elements in the entries that correspond to the blocks j1, j2, · · · . In addition,

let em be a standard basis vector (either in state, control or observation space) that has 1 at the

m-th entry and 0 elsewhere, by which a set of all matrices that can only have a single non-zero

element is represented as B = span(eqe
>
r ) ∀ q, r. Based on these notations, we prove the following

two theorems featuring important characteristics of the derived optimal controller.

First, it can easily be shown that:

Lemma 1. if P ∈ B, then P>XP ∈ Sk ∀ valid X,

and this leads to

Theorem 1. If A,B,Q,R ∈ Sk and Ci, Di ∈ B ∀i, then Lt ∈ Sk ∀t = [1, · · · , n− 1].

Proof. Remember the following update rule for Lt:

Lt =

(
B>Sxt+1B +

c∑
i=1

C>i (Sxt+1 + Set+1)Ci +R

)−1

B>Sxt+1A. (9 revisited)

From the lemma above,
∑c

i=1C
>
i (Sxt+1 +Set+1)Ci ∈ Sk, and all other components except Sxt+1 belong

to Sk by definition. If we assume that Sxt+1 ∈ Sk, then Lt ∈ Sk and also Sxt ∈ Sk by the update rule

for Sxt+1:

Sxt = A>Sxt+1A+

d∑
i=1

D>i K
>
t S

e
t+1KtDi +Q−A>Sxt+1BLt, (11 revisited)

where
∑d

i=1D
>
i K

>
t S

e
t+1KtDi ∈ Sk by the lemma and all other components, including Lt, belong to

Sk. As Sxn = Q ∈ Sk, this completes the proof by induction.

The above result shows that the resultant feedback controller Ltxt is always decoupled into k

independent controllers, regardless of the couplings caused by signal-dependent or state-dependent

noises.

Secondly, it can easily be shown that:

Lemma 2. If X ∈ Sk and y ∈ U{j1,j2,··· }, then Xy ∈ U{j1,j2,··· },

and this results

Theorem 2. If Di ∈ span(eqe
>
r ) and er ∈ U{ji} ∀i = [1, · · · , d], then lt ∈ U{j1,··· ,jd} ∀t =

[1, · · · , n− 1]

Proof. Consider the update rule for lt:

lt =
1

2

(
B>Sxt+1B +

c∑
i=1

C>i (Sxt+1 + Set+1)Ci +R

)−1

B>sxt+1. (10 revisited)

8



From the above proposition, we have proved that the whole matrix on the lefthand side of sxt+1

belongs to Sk. Then using the lemma above, we can only show that sxt+1 ∈ U{j1,··· ,jd}. Remember

the update rule for sxt is

sxt =

(
d∑
i=1

2a>i K
>
t S

e
t+1KtDi

)
+ (A−BLt)>sxt+1, (13 revisited)

and the final condition is sxn = 0 ∈ U{j1,··· ,jd}. If sxt+1 ∈ U{j1,··· ,jd}, then (A−BLt)>sxt+1 ∈ U{j1,··· ,jd}
from the lemma above, and for each i,

a>i K
>
t S

e
t+1KtDi = (a>i K

>
t S

e
t+1Kteq)e

>
r ∈ U{ji}.

Therefore sxt ∈ U{j1,··· ,jd} too and this completes the proof by induction.

This result shows that the feed-forward controller lt only controls sub-system dynamics that

affect the observation noise.

Taken together, if a given system dynamics is decoupled, the resultant optimal controller exhibits

two important characteristics. First, the feedback part of the controller is decoupled, where each

sub-controller independently drives the corresponding sub-state to the goal state. Second, on the

other hand, the feed-forward part of the controller only generates control signals that affect (possibly

reduces) the observation noise. Therefore, the feed-forward part can be considered as an offline,

pre-planned motor program that collects the sensory information, and the feedback part can be

considered as an online motor program that tries to achieve the given task goal based on the

sensory information that is collected online.

6 Model of two dimensional reaching

The dynamics of the reaching movement was modelled as a linear two-dimensional dynamics. The

model assumes a point-mass system to which the control signal is smoothened by a muscle-like

second order low-pass filter. Deterministic dynamics and observer of the one-dimensional model are

represented as follows:

x̌it =


pit

vit

f it

git

p∗i

 , Ǎ =


1 ∆ 0 0 0

0 1 dt/m 0 0

0 0 1−∆/τ ∆/τ 0

0 0 0 1−∆/τ 0

0 0 0 0 1

 , B̌ =


0

0

0

∆/τ

0

 , Ȟ =

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

 ,

where pit, v
i
t and f it are the position, velocity and force of the hand in ith dimension at time t, p∗i is

the goal position, ∆ is the time step (set to 0.01 s), m is the effective mass of the hand (set to 1
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kg), and τ is time constant of the low-pass filter [1]. Corresponding cost matrices are given as

Ř = r, Q̌ = O5×5, Q̌n =


1 0 0 0 −1

0 w2
v 0 0 0

0 0 w2
f 0 0

0 0 0 0 0

−1 0 0 0 1

 ,

where Om×n represents a m×n zero matrix, r is a regularization factor, and wv and wf are relative

weights of the penalties on non-zero final velocity and force, with respect to the positional penalty.

Now we build a two-dimensional system by stacking the above system:

xt =

[
x̌1
t

x̌2
t

]
, A =

[
Ǎ O5×5

O5×5 Ǎ

]
, B =

[
B̌1 O5×1

O5×1 B̌2

]
, H =

[
Ȟ1 O3×5

O3×5 Ȟ2

]
.

Both systems use the same ∆ and τ ’s. Similarly, cost matrices will be

R =

[
r 0

0 r

]
, Q = O10×10, Qn =

[
Q̌n O5×5

O5×5 Q̌n

]
.

Now we add noise elements to the system. For convenience, signal and state independent noise terms

ξt, ωt are both set to zero and the covariance of internal noise Ωη is set to be Ωη = ω2
η diag([1 0 0 0 0 1 0 0 0 0]),

which means that the internal noise only affects the position update. Effect of assigning non-zero

values for these zero terms will be tested in the sensitivity analysis.

As the start and the target position are known to subjects almost deterministically, we put the

initial state covariance Σ1 to be 0. Effect of non-zero initial positional uncertainty will be tested in

the sensitivity analysis. The matrix for the signal dependent noise Ft is modelled as

Ft = α

[
ε1
t ε2

t

ε3
t ε4

t

]
,

where α is a constant noise amplification factor εit’s are random variables each of which follows a

unit normal distribution. In theory, each element should have its own amplification factor, but we

used one number for simplicity. Similar to the case of signal-independent noises, effects of having

individual factors will be tested in the sensitivity analysis. BFt is later decomposed into
∑4

i=1 ε
i
tCi

where each Ci has only one non-zero element α. Note that, since Ft has off-diagonal terms, the

signal-dependent noise is coupled.
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The state-dependent observation noise terms gt, a, d are modelled as follows:

gt =



βε1t

0

0

βε2t

0

0


, d> =

[
0 −cos(θ) 0 0 0 0 −sin(θ) 0 0 0

]
,

which defines our experimental situation when the velocity in the visibility modulation direction (θ)

affects the positional sensing. Note that a specifies the threshold above which the cursor becomes

fully detectable. This state-dependent term is later decomposed into
∑2

i=1 ε
i
t(ai + Dixt), where

a1 = βae1 and a2 = βae4 (remember we defined em to be a standard basis vector with 1 at the

m-th entry and 0 elsewhere). D1 is a 6×10 matrices that has D1,2 = −κβcos(θ), D1,7 = −κβsin(θ)

and zero elsewhere. D2 is a 6×10 matrices that has D4,2 = −κβcos(θ), D4,7 = −κβsin(θ) and zero

elsewhere. Note that, except when θ = 0, π/2, this has two non-zero elements and therefore doesn’t

fit the assumption in Section 5, but can be transformed to a single non-zero element matrice if the

coordinate frame is properly rotated so that one of the coordinate axis aligns to θ. Again, effects

of having additional non-zero terms in gt, such as an effect of state-dependent noise in the velocity

sensing, will be tested in the sensitivity analysis.

6.1 Parameter selection

The system has the following eight free parameters to be selected: [τ, r, α, wv, wf , ωη, β, a]. For

a movement of time step ∆ × N -steps , we set τ = 0.04, r = 10−6/(N−1), α = 0.7∆/τ , wv =

0.3, wf = 0.1, ωη = 0.005, β = 0.1, and a = 0.2. Except unitless parameters, all values are

based on MKS units. For sensitivity analysis, we add sixteen more parameters that were assumed

to be zero (e.g., signal- or state-independent noise variances) or to be equal to the others (e.g.

signal-dependent noise) in our simulation.

Additional parameters added are as follows:

1. ξt = diag([ξpt ξvt ξft ξgt 0 ξpt ξvt ξft ξgt 0])2: 4 parameters

2. ωt = diag([ωpt ωvt ωft ωpt ωvt ωft ])2: 3 parameters

3. ηt = diag([ηpt ηvt ηft ηgt 0 ηpt ηvt ηft ηgt 0])2 instead of ηpt 6= 0 only: additional 3 parameters

4. Σ1
x = diag([σp 0 · · · 0]): 1 parameter

5. α11, α12, α21, α22 instead of α: 3 additional parameters

6. a1, a2 instead of a: 1 additional parameter

7. β1, β2 instead of β: 1 additional parameter.
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Figure S1: Cost per iteration. Total 700,000 simulations for all reaching directions in experiment
1. Total expected costs up to five iterations are summarized as the mean (filled squares) and the
range (grey polygon) in a logarithmic scale. Changes in cost are summarized as the mean (filled
circles) and the range (vertical lines), where a negative value indicates a decrease in cost.

By 5-7, Ft of the signal-dependent noise is now represented as

Ft =

[
α11ε

1
t α12ε

2
t

α21ε
3
t α22ε

4
t

]
,

and the state-dependent noise has effects in observation of the position and the velocity of the

cursor:

g1
t (a

1 + κd>xt) + g2
t (a

2 + κd>xt),

where

g1
t =

[
β1ε1t , 0, 0, β

1ε2t , 0, 0,
]>
, g2
t =

[
0, β2ε3t , 0, 0, β

2ε4t , 0,
]>

6.2 Convergence analysis

Figure S1 shows a summary of the cost per iteration for all 700,000 simulation runs (100,000 × 7

directions from 0 to 180 degrees) during the sensitivity analysis described in the main manuscript.

We calculated the average, minimum and maximum costs for each iteration (up to fifth) in order to

examine whether the suggested method can robustly reduce the total cost through iterations. The

result suggests that the iterative method stably reduces the total cost over the iterations.
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