Biomechanical diagnostics in children and adolescents with juvenile idiopathic arthritis for individual physical activity promotion (BEWARE project)
Juvenile idiopathic arthritis (JIA) is often associated with impairments in everyday functionality and accompanying physical inactivity. The goal of this study is to early advise children and adolescents with JIA to a safe physical activity in order to prevent impairments and malfunctions. The advice is based on the clinical disease status, patients’ anthropometrics, patients’ self-assessment and on functional analyses, which includes a biomechanical examination with a 3D-motion analysis and a motor function test. Only newly diagnosed JIA patients of the German Center for Pediatric and Adolescent Rheumatology (Garmisch-Partenkirchen) will be included and measured for a minimum of three times in this study.
After a successful study ending, pediatric rheumatologists and pediatricians will get an advisory tool, which allows an adequate physical activity promotion of their patient.
The project is funded by the „Innovationsausschuss des Gemeinsamen Bundesausschuss“.
Project partners:
- German Center for Pediatric and Adolescent Rheumatology (Garmisch-Partenkirchen)
- aQua – Institut für angewandte Qualitätsförderung und Forschung im Gesundheitswesen GmbH
- Deutsche Kinderrheuma-Stiftung
- Allgemein Ortskrankenkasse (AOK)
- Universitätsspital Basel
- Deutsches Rheuma-Forschungszentrum Berlin
- Soliance GmbH
More information about the project
Prof. Dr. Ansgar Schwirtz | Dr. Josephine Gizik
Lifestyle change towards more physical activity through the introduction of an individualized exercise program for young rheumatism patients – AktiMiRh
Funded by the "Dr. Melitta Berkemann foundation"
Cooperation project with the German Center for Pediatric and Adolescent Rheumatology, Garmisch-Partenkirchen
Children and adolescents with rheumatism often exercise less than recommended by the World Health Organisation (WHO). Together with disease-related limitations, this can lead to deficits in the physical skills of endurance and strength. To reduce these deficits or even prevent their emergence, sports scientists have developed an individualized exercise program for young rheumatism patients as a cooperation project of the Technical University of Munich and the German Center for Pediatric and Adolescent Rheumatology. The access to sports and physical activity for young rheumatism patients is aimed to be facilitated by an individualized exercise program containing concrete suggestions for exercises. The main goal of the study is to increase physical activity of young rheumatism patients with the help of a physical activity program. In addition, the use of this exercise program is expected to have a positive impact on sports-related motor skills, quality of life and joint load during the landing phase of a vertical jump. Exercises from the areas of endurance, strength, speed, mobility and coordination, suitable for children and adolescents, are part of the program. The content will be individually adapted to the patient’s state of disease and is designed to be performed at home three times a week between two hospital stays.
Prof. Dr. Ansgar Schwirtz | Dr. Josephine Gizik | Nadja Baumeister
Biomechanical analysis of daily activity of young patients to assess sports capability
The goal of this study is to evaluate children and adolescents of the Inception Cohort of Newly Diagnosed Patients (ICON) with juvenile idiopathic arthritis (JIA) concerning their everyday functionality and their motor skills. The patients` function will be examined with a 3D-motion analysis system and with a motor function test during two hospital stays in the German Center for Pediatric and Adolescent Rheumatology, Garmisch-Partenkirchen. At the end of their hospitalizations they receive individual recommendations on physical activity based on the “Rheuma und Sport Kompass”.
This is a cooperation project between the German Center for Pediatric and Adolescent Rheumatology (Garmisch-Partenkirchen) and the Associate Professorship of Biomechanics in Sports (TUM).
The project is funded by the „Dr. Melitta Berkemann Stiftung“.
Prof. Dr. Ansgar Schwirtz | Dr. Josephine Gizik | Nadja Baumeister
Project of biomechanical analysis in children and adolescents with juvenile idiopathic arthritis
This is a cooperation project between the laboratory for motion analysis of the German Center for Pediatric and Adolescent Rheumatology (Garmisch-Partenkirchen) and the Associate Professorship of Biomechanics in Sports. Juvenile idiopathic arthritis (JIA) is an autoimmune and/or autoinflammatory disease, which is associated with an inflammation of joints with an onset of disease until the age of 16. The aim of the PhD project is to quantify relieving postures and restrictions in movement of JIA patients with a 3d-motion analysis system. The results of this project are an important part in the general purpose to validate and optimise the therapy for JIA patients and to develop rheumatism adapted therapy concepts including sports programs. Dr. Josephine Merker, Prof. Dr. Ansgar Schwirtz, Dr. Florian Kreuzpointner
This project is funded by the German foundation Deutsche Kinderrheuma-Stiftung, the association Hilfe für das rheumakranke Kind and the Ironman-Hilfe Kinderrheuma
Force Enhancement of Single- and Multi-Joint Muscle Actions in vivo under maximal and submaximal voluntary activation level
Force enhancement (FE) describes the phenomenon of force potentiation in a muscle cell or an entire muscle during and after active stretching, as compared to the force produced during a purely isometric contraction at the same muscle length. The underlying physiological mechanisms responsible for this phenomenon are still not fully understood. However, in vitro studies suggest that the interplay of active and passive components at the cellular level is responsible for the increased force output. To date, FE has been demonstrated both in vitro and in vivo in muscle fibers and smaller human muscles, but substantial research is still needed to confirm its existence during voluntary everyday motor activities.
To advance towards this overarching goal, the functional behavior of the voluntarily activated quadriceps femoris muscle during and after active stretching will be investigated through targeted in vivo studies. Our research group aims to address the following key questions: (1) How does eccentric and post-eccentric force potentiation manifest in a large human muscle (quadriceps femoris) in relation to the level of activation or force? (2) What impact does the complex muscle architecture of large muscles have on the characteristics of FE during and after active stretching?
Ski Jumping Research
Biomechanical analysis of landing and its preparation
In ski jumping the landing and its preparation have been demonstrated to influence the performance. Over this, an effective and controlled movement is important to prevent injuries, connected in particular with the telemark landing position. The goal of this PhD project is the biomechanical analysis of the landing movements, in order to improve performance and safety, sharing the information with coaches and athletes.
Veronica Bessone, Dr. Wolfgang Seiberl, Prof. Dr. Ansgar Schwirtz
This study is funded by the TUM International Graduate School of Science and Engineering and is part of the project Skopting, collaboration between the Associate Professorship of Biomechanics in Sports and Flight System Dynamics of TUM.
Analysis and optimization of the early flight phase of the ski jump
A ski jump consists of four phases (in run, take off, flight, landing) which have to be inter-coordinated chronologically. The early flight phase as the link between take off and stable flight is the most crucial stage for the ski jumper and requires both optimal control and adjustment to internal and external influencing factors (Arndt et al., 1995). The aim of the study is the optimization of the early flight phase by determining optimal performance patterns and considering the jumpers individual capabilities.
Johannes Petrat, Prof. Dr. Ansgar Schwirtz
This study is funded by the TUM International Graduate School of Science and Engineering and is part of the project Skopting, collaboration between the Associate Professorship of Biomechanics in Sports and Flight System Dynamics of TUM.
Ski rolling angle analysis in ski jumping and Nordic combined
Flight system and ski jumping performance are influenced by the rolling angle of the ski. Therefore, it can be implemented as a valuable parameter in order to optimize the individual flight technique as well as the ski-binding-setup. The goal of this project is to use inertial measurement units (IMUs) for analyzing the rolling angle and provide objective data to athletes and coaches.
Johannes Petrat, Prof. Dr. Ansgar Schwirtz
Project partners: German Ski Association
This project is funded by the Bundesinstitut für Sportwissenschaft.
Cross-Country Skiing
Cross-country skiing and the influence of different surroundings
The aim of the project is to figure out if cross-country skiing of high-level athletes on a treadmill is comparable to skiing on an outdoor track, providing the national coaches as well as the athlete’s additional information regarding technique optimization. The study will be carried by use of 3D motion analysis, electromyography and pole force measurements and is designed in a close cooperation with the national coaches.
Florian Paternoster, Prof. Dr. Ansgar Schwirtz, Veronica Bessone, Dr. Wolfgang Seiberl
Project partners: Michael Veith and German Ski Association
This project is funded by the Bundesinstitut für Sportwissenschaft
Tennis
Intervention study regarding changes in the kinematic chain and ball speed of elite-youth tennis players
The goal of the project is to evaluate the impact of two different interventions (technique, strength training) regarding changes in the kinematic chain as well as the speed of the ball during a tennis serve. According to data from Craig O’Shannessy (braingametennis.com) a tennis rally of elite players typically end within four shots, highlighting the impact of a good serve. The subjects of this project are consisting of elite-youth tennis players, assigned to a control and an intervention group. For the kinematic chain, the project focuses on the speed and the chronological sequence of the different segments, starting from the bottom to the top of the players. For this purpose, we will use markeless 3D motion tracking provided by SIMI. For the speed of the tennis ball, the peak velocity is considered.
Sarah Reisinger, Prof. Dr. Ansgar Schwirtz, Dr. Florian Paternoster
Without good collaborators, such a project would not be possible. This Team consists of:
- Dr. Peter Spitzenpfeil, Applied Sport Science, Technical University of Munich
- Dr. Mario Weichenberger, Preventive and rehabilitative sport medicine, Klinikum rechts der Isar, Technical University of Munich
- German Tennis Federation
- Bavarian Tennis Federation
- Support Hardware: SIMI - reality motion systems
This project is funded by the Bundesinstitut für Sportwissenschaft.
Javelin throwing
Prevention: Shoulder injuries in javelin throwing – a six year follow up study
The study identifies two major tasks. On the one hand there is a longitudinal six year follow up MRI analysis of functional adaptations under a clinical and structural perspective. On the other hand, there will be a correlation analysis of physiological parameters with the onset of shoulder and or elbow injuries for finding intrinsic parameters.
Dr. Peter Brucker, Christop Köble, Dr. Florian Kreuzpointner, Prof. Dr. Ansgar Schwirtz
Project Partners: German athletics association, Klinikum Rechts der Isar (MRI)
This project is funded by the Bundesinstitut für Sportwissenschaft.
Firefighters
Biomechanical and physiological prevention program for firefighters
Physical fitness is an important element for firefighters. The purpose of this study is to identify the main biomechanical and physiological demands of firefighting and to develop a firefighting specific preventive exercise program for firefighting incumbents. Subjects undergo a test battery of selected physical ability tests and the results will be matched with the results of the job demands analysis. The assessments include physical demands in terms of aerobic fitness, muscular strength, flexibility and balance abilities in order to gain knowledge on the contribution of these attributes to firefighting.
Stephanie Windisch, Dr. Wolfgang Seiberl, Prof. Dr. Ansgar Schwirtz
Projekt Partners: Prof. Dr. Daniel Hahn, Ruhr-Universität Bochum, Flughafen-Feuerwehr München, Flughafen München GmbH, AOK Bayern
This project is funded by the AOK Bayern – Die Gesundheitskasse und Flughafen-München GmbH
Physiotherapy
Physio - Development of a cyber-physical training system to optimize physiotherapy
The aim of the project is to develop an adaptive cloud-based software solution for physiotherapy training equipment. The software should be an assistant for physiotherapy from diagnosis throughout the training process. The system compensates the care gap between the individual therapy sessions. It includes also the possibility for follow up assessments and training documentation.
Dr. Florian Kreuzpointner, Romina Erhardt
Projekt partners: eGym GmbH, München
This project is funded by the „Bayerischen Staatsministerium für Wirtschaft und Medien, Energie und Technologie“ within the „Informations- und Kommunikationstechnik Bayern“