Dr. Tiago Russomanno
Wissenschaftlicher Mitarbeiter
Tel +49.89.289.24499
Fax +49.89.289.24497
Funktion:Wissenschaftlicher Mitarbeiter
Gebäude: Campus D, Georg-Brauchle-Ring 60/62
Raum: M202
Sprechzeiten: nach Vereinbarung
Email: tiago.russomanno@tum.de
Arbeits- und Forschungsschwerpunkte
Dr. Tiago G. Russomanno focuses his research on performance analysis in sports and informatics. Mainly focus on new technologies applied to Handball, Wheelchair Rugby and Ultimate Frisbee. The current research areas are:
- Performance Analysis in sports.
- Drone technologies applied to ultimate Frisbee.
- Momentum analysis in team sports.
- Biomechanics of track and field.
He is responsible for the project:” Use of drones in sports - Position data and video for training and competition”.
Beruflicher Werdegang
- 2001: BSc in Physical Education and sports training (Unicamp)
- 2005: MSc in Physical Education in the area of Biodynamics of Human movement (Unicamp)
- 2011: PhD in Physical Education in the area of Biodynamics of Human movement (Unicamp)
- 2012: Specialization in Biochemistry of Sports (Unicamp)
- Since 2012: Associate Professor at the University of Brasilia
- Since 2019: Guest Professor at the Chair of Performance Analysis and Sport Informatics
Ausgewählte Publikationen
- Monteiro, R., Santos, C., Blauberger, P., Link, D., Russomanno, T., Tahara, A., Chinaglia, A., & Santiago, P. (2024). Enhancing soccer goalkeepers penalty dive kinematics with instructional video and laterality insights in field conditions. Scientific Reports. 14. DOI:10.1038/s41598-024-60074-x
- Fukushima, T., Blauberger, P., Russomanno, T., & Lames, M. (2024). The potential of human pose estimation for motion capture in sports: a validation study. Sports Engineering. 27. DOI:10.1007/s12283-024-00460-w
- Russomanno, T.G., Blauberger, P., Kolbinger, O., Lam, H., Schmid, M., and Lames, M. (2022). Drone-Based Position Detection in Sports—Validation and Applications. Frontiers in Physiology 13. doi: 10.3389/fphys.2022.850512
- Lam, H., Kolbinger, O., Lames, M., & Russomanno, T.G. (2021). State Transition Modeling in Ultimate Frisbee: Adaptation of a Promising Method for Performance Analysis in Invasion Sports. Frontiers in Psychology, 12:664511. doi: 10.3389/fpsyg.2021.664511.
- Russomanno, T., Lam, H., Knopp, M., Huang, H., Stadtlander, T., and Lames, M. (2021). Within-Match Performance Dynamics - Momentary Strength in Handball. Journal of Human Kinetics 79, 211-219. doi: 10.2478/hukin-2021-0073.
- Russomanno, T., Linke, D., Geromiller, M. & Lames, M. (2019). Performance of Performance Indicators in Football. In M. Lames, A. Danilov, E. Timme & Y. Vassilevski (Eds.), Proceedings of the 12th International Symposium on Computer Science in Sport (IACSS 2019) (pp. 36-44). Heidelberg: Springer.
- Barros, R. M. L. ; Russomanno, T. G. ; Brenzikofer, R. ; Figueroa, P. J. (2006). A method to synchronise video cameras using the audio band. Journal of Biomechanics 39 (4), p. 776-780. https://doi.org/10.1016/j.jbiomech.2004.12.025
- Ricardo M.L. Barros, Rafael P. Menezes, Tiago G. Russomanno, Milton S. Misuta, Bruno C. Brandão, Pascual J. Figueroa, Neucimar J. Leite & Siome K. Goldenstein (2011). Measuring handball players trajectories using an automatically trained boosting algorithm. Computer Methods in Biomechanics and Biomedical Engineering, 14:1, 53-63, DOI: 10.1080/10255842.2010.494602.